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The recent finding of collective actuation in active solids—solids embedded with active units—is a new
promise for the design of multifunctional materials with genuine autonomy, and a better understanding of
dense biological systems. Here, we combine the experimental study of centimetric model active solids, the
numerical study of an agent-based model, and theoretical arguments to reveal a new form of collective
actuation and how mechanical tension can serve as a general mechanism for transitioning between different
collective actuation regimes. The presence of hysteresis when varying tension back and forth highlights the
nontrivial selectivity of collective actuations.
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Active solids are dense assemblies or elastic structures
made of—or doped with—active units. They encompass a
wide class of systems ranging from biological to manmade
materials [1–14]. Collective actuation (CA) takes place
when spontaneous activation of a few harmonic modes
occurs, and was first reported in a numerical study of
jammed active particles [2]. More recently, the experimen-
tal realization and theoretical study of CA in stable elastic
structures [14] has demonstrated the key role of nonlinear
elasto-active feedback between the deformations of the
structure and the orientations of the active units. A typical
realization of CA is illustrated in Fig. 1. When an active
elastic structure, to be further described below, is pinned at
its edges, its nodes perform a synchronized chiral oscil-
lation (SCO) around their reference positions [Fig. 1(b);
Supplemental Material, Movie 1 [15] ].
Very similar SCO dynamics have been reported in

confined epithelial cells [20] and dense bacterial suspen-
sions [21,22]. Another collective dynamics, with the system
performing global alternating rotation (GAR) around its
center, was even reported in biofilms [22,23], and, quite
remarkably, a transition from SCO to GAR could be
observed as activity decreases [22]. From a biomimetic
point of view, activemetamaterials are therefore a promising
framework for creating multifunctional materials [24–28]
with bona fide autonomy [29]. An explicit realization of
activemetamaterials exhibiting different CA regimes, with a
good control on the transition between these regimes is
however still lacking.
In this Letter, we bridge this gap by (i) demonstrating

the existence of both SCO and GAR in the same active
elastic structure, [Figs. 1(a) and 1(b) and Supplemental
Material Movies 1 and 2 [15] ] and (ii) showing how
mechanical tension can be harnessed to control the tran-
sition between these different CA regimes. We first

(a) (b)

(c) (d)

(e) (f)

FIG. 1. Experimental realization of a controlled discontinuous
transition between collective actuations. (a) GAR in a triangular
lattice under central pinning;N ¼ 36. (b) SCO in a triangular lattice
under edge pinning; N ¼ 19. Left panel: dynamics in real space
(red arrows, polarities n̂i; trajectories color-coded from blue to red
with increasing time; scale bars, 10 cm). Right panel: dynamics
projected on the translation and rotation modes of the structures
(vertical axis, hRjn̂i; equatorial plane, hTx=yjn̂i); see notations and
convention in panel (c). (d) A discontinuous transition between
GAR and SCO is obtained in a model elastic structure, the active
Gerris by tuning tension (see also the Supplemental Material,
Movie 5 [15]): condensation fraction on the rotation mode λR as a
function of tension α − 1 (red bullets are obtained from data
averaged in the steady state; the gray dots and arrows sketch the
transitory regime when initial conditions enforce rotation at large
tension). (e),(f) GAR, respectively (resp.) SCO in the active Gerris
at low (α ¼ 1.0), resp. large (α ¼ 1.8) tension; N ¼ 6.
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establish the experimental proof of concept using a toy-
model active solid [Figs. 1(e) and 1(f) and Supplemental
Material Movies 3 and 4 [15] ]. We then dissect the
underlying mechanism and extend our findings to more
general geometries, on the basis of an agent’s model
and theoretical arguments. Apart from being a simple
design principle, tension control is of significant biological
interest, as it is known to play a key role in growth
processes and mechanical responses [30–34], especially
during morphogenesis.
Our prototypic active solids, described in detail in

Ref. [14], consist of elastic structures, composed of N
active units connected by coil springs of stiffness k and rest
length l0 (Fig. 1). Each active unit is made of a Hexbug©, a
centimetric battery-powered running robot, embedded in a
3D printed annulus (height 1.4 cm; internal radius 2.5 cm,
3 mm thick). Each active unit exerts a polar force F0n̂i,
where n̂i denotes the orientation of the Hexbug. Each node
has a well-defined reference position, but is displaced by
the active unit. In contrast, the polarity of each unit is free to
rotate and reorients toward the node’s displacement rate _ui
according to a self-alignment mechanism, first identified
for walking discs [35], and best illustrated by the dynamics
of a Hexbug in a harmonic potential [14,36]. This nonlinear
elasto-active feedback between deformations and polarities
is controlled by the ratio π ¼ le=la with le ¼ F0=k, the
typical elastic deformation caused by the active force and
la, the alignment length over which n̂i aligns toward _ui. π is
defined at the microscopic, Hexbug level, and is therefore
independent of the boundary condition. When π increases,
the dynamics of a triangular elastic lattice, pinned at its
edges, exhibit a transition from a disordered noise-
dominated regime to the SCO dynamics illustrated in
Fig. 1(b), where each node oscillates synchronously around
its mechanical equilibrium position [14]. Altogether the
dynamics are well described by

_ui ¼ πn̂i þ Fel
i ; ð1aÞ

_ni ¼ ðn̂i × _uiÞ × n̂i þ
ffiffiffiffiffiffiffi
2D

p
ξin̂⊥i ; ð1bÞ

where Fel
i is the sum of the elastic forces acting on node i,

and ξi are random Gaussian variables with zero mean and
correlations hξiðtÞξjðt0Þi ¼ δijδðt − t0Þ. The analysis of this
model has shown that CA obeys a nontrivial selection
mechanism: the dynamics does not necessarily condense on
the lowest energy modes of the structure [14].
Our first, simple but important, result is that the GAR

regime is readily obtained in the same active network of
springs by changing the boundary conditions: when a given
node of the elastic structure is pinned both in translation
and rotation, the structure alternatively rotates clockwise
and counterclockwise around this node [Fig. 1(a) and
Supplemental Material, Movie 2 [15] ]. As we shall now
see, applying tension at the boundary allows for

transitioning abruptly between the SCO and GAR regimes,
while keeping π constant. We design a toy-model active
elastic structure, which consists of N ¼ 6 active units at the
vertices of an inner rigid hexagon, each connected radially
to the vertices of an outer pinned hexagon via soft
springs of stiffness k ¼ 1 N=m [Fig. 2(a)]. We term this
structure the active Gerris in reference to the water strider
bug. Tension is controlled by a stepwise elongation of the
radial springs by a factor of α. At low tension, the GAR
and SCO regimes are both stable [Fig. 1(e) and
Supplemental Material, Movie 3 [15] ]. At large tension,
only the SCO regime is stable, while the GAR regime is
metastable [arrows in Fig. 1(d) and Supplemental Material,
Movie 4 [15]], allowing for a one-way transition from GAR
to SCO (Supplemental Material, Movie 5 [15]).
These dynamics are best described when decomposed on

the elastic modes of the structure, that are the eigenvectors
jφki, associated with the eigenvalues ω2

k of the dynamical
matrix M. More specifically, we represent the dynamics in
the space spanned by the amplitude of the polarity field
projected on three modes of interest: the vertical axis
represents the normalized projection on the rotation mode
aR ¼ hRjn̂i= ffiffiffiffi

N
p

, whereas the equatorial plane represents
the normalized projections on the two translational-like
modes aTx=y

¼ hTx=yjn̂i=
ffiffiffiffi
N

p
[Fig. 1(c)]. From the polarity

field normalization, the projections are confined inside the
three-sphere of radius

ffiffiffiffi
N

p
, normalized to 1. In the GAR

regime, obtained from the central pinning condition, the
dynamics alternatively condensate on the clockwise and
counterclockwise rotation (the poles of the sphere), sepa-
rated by fast reversal motion [Fig. 1(a)]. In the SCO regime,
obtained from the edge pinning condition, the dynamics
condensate on the translational modes spanning the equator
of the sphere [Fig. 1(b)]. Figures 1(e) and 1(f) convincingly
demonstrate that the active Gerris explores the same
dynamics under the control of tension. The dynamics are
quantified by the mean square projection of the polarity
field on each mode:

λk ¼ ha2kit ¼
1

T

Z
T
�hφkjn̂ðtÞiffiffiffiffi

N
p

�
2

dt: ð2Þ

The discontinuous transition from GAR to SCO in the
active Gerris is illustrated by the abrupt drop of this
condensation fraction on the rotation mode λR as tension
increases [Fig. 1(d)].
We investigate numerically the transition in the active

Gerris, using Eq. (1). We set π ¼ 2.0, a value consistent
with previous calibrations [14], and investigate the effect of
tension. The Gerris has six nodes that are connected by a
structure, which can safely be considered rigid [Fig. 2(a)
and Supplemental Material [15] ]. It is thus described by
three degrees of freedom, the spatial coordinates of its
barycenter and its angular orientation, the dynamical
equations which are provided in the Supplemental
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Material [15]. The three associated normal modes are two
degenerated translation modes jTx=yi and one rotation
mode jRi, which are illustrated in Fig. 2(b), together with
their energies as a function of the imposed tension. Both the
rotation and translation energies increase with tension, but
the energetic ordering of the modes is preserved, and their
geometries are unaffected. The three modes end up degen-
erated at infinite tension.
We first simulate the noiseless, D ¼ 0, active Gerris

equations in the harmonic approximation, annealing back
and forth between small and large tensions. We find two
linearly stable actuation branches, which we denote the TT
and RT regimes [Fig. 2(c), circle markers]. The TT regime
is a strict condensation of the polarity field on the equator
[Fig. 2(d)], with λR ¼ 0, corresponding to a SCO of the
Gerris. As the dynamics can be restricted to two modes that
are degenerated, fully delocalized, and locally orthogonal,
this regime exactly maps to that of a single particle trapped
in a parabolic potential [14,15,36] (Appendix). The RT
regimes consist of a condensation of the polarity field on a
plane, defined by the rotation vector jRi and one of the six
translational vectors jTi, pointing toward one of the
hexagon’s main axes, in the equatorial plane [Fig. 2(d)].
They correspond to a GAR of the Gerris. The six possible
orientations of this plane define six equivalent attractors,
one of which is selected, spontaneously breaking the
sixfold symmetry of the system [15]. Depending on the
tension, we actually report different RT dynamics, sepa-
rated by hysteretic transitions, which differ in the precise
trajectory of the alternating rotation. These RT regimes and
the transitions among them are well captured by the
dynamics of a single particle trapped in elliptic harmonic
potentials [15,37] (Appendix). Within the linear level of
description, there is however no transition between the
coexisting RT and TT regimes. Including the geometrical
nonlinearities of the elastic forces [Fig. 2(c), square

markers], we find that the TT regime is unaffected, while
the stability ranges of the RT regimes are shifted toward
smaller tensions. More significantly, the RT regime desta-
bilizes toward the TT regime for large enough tension. We
thus find that geometrical nonlinearities allow for an
irreversible and discontinuous transition from the RT to
the TT regime as tension increases.

(a) (b) (c) (d)

FIG. 2. Active Gerris’s dynamics as a function of lattice tension. (a) Elastic architecture cartoon. In gray, the rigid inner hexagon.
(b) Normal modes spectrum as a function of springs tension α − 1. The red (resp. blue) solid line corresponds to the rotation mode
(resp. degenerated translational modes). (c) Condensation fraction on the rotation mode λR as a function of lattice tension α − 1 (yellow-
orange to black symbols, the different RT regimes; blue symbols, TT regimes; (∘), harmonic approximation; (□), including geometrical
nonlinearities; empty markers, backward annealing). (d) Side and top view of the 3D representations of the polarity field steady
dynamics projected on the rotation and translation modes for the regimes RT2 (left), RT1 (middle), and TT (right) (vertical axis, hRjn̂i;
equatorial plane, hTx=yjn̂i).

(a)

(b)

FIG. 3. Active Gerris’s dynamics in the presence of noise.
(a) Projection of the polarity field dynamics illustrating the effect
of noise on the RT1 regime, at short, intermediate, and long times
(vertical axis, hRjn̂i; equatorial plane; hTx=yjn̂i). (b) Density of
condensation fraction on the rotation mode ρλR (color coded as
given by the colorbar) and probability of ending up in a RT
regime at long times PRT (black markers) as a function of tension
α − 1.
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The TT regime persists for all values of the tension and
coexists with the RT regime. We discuss the relative
stability of the two attractors by adding a small noise,
D ¼ 10−2, consistent with existing calibrations [14].
Starting from the RT regime, the system first remains
close to the initial RT attractor, then visits the six equivalent
RT attractors, before it eventually destabilizes into the TT
regime at long times [Fig. 3(a)]. The smaller the tension, the
longer it takes for this destabilization to take place. We
evaluate the metastability of the RT regime, by simulating
80 independent runs with random initial condition, for each
value of the tension. At small tension, the probability of
ending up in a RT regime at t ¼ 10 000, PRT , is close to 1
and slowly decreases with increasing tension. This is due to
both the increasing size of the attraction basin of the TT
regime and the decreasing lifetime of the metastable RT
regime. For tensions α ≥ 1.2, PRT vanishes abruptly: all
initial conditions end up in the TT regime at long time.
Altogether the active Gerris establishes the proof of

concept for the experimental control of CA using tension.
Its structure, which results from several experimental com-
promises, is however admittedly rather artificial, raising the
question of the possible generalization of the above results
to a genuine active material. We theoretically show below
that a tension-controlled transition to SCO is generically
expected even in the harmonic approximation. Consider an
arbitrary lattice undergoing homogeneous dilation of factor
α ∈ ½1;þ∞�, the dynamical matrix of which reads as [15]

MðαÞ ¼ 1

α
M0 þ

�
1 −

1

α

�
M1: ð3Þ

M0 is the dynamical matrix of the structure at zero tension,
and M1 reads as

M1 ¼
�
Mxx

1 0

0 Myy
1

�
; ð4Þ

where Mxx
1 ¼ Myy

1 is the Laplacian matrix of the structure
network Mαα

1;ii ¼ ZðiÞ, Mαα
1;ij ¼ −1 if i and j are neighbors

and zero otherwise. Since M1 decouples the x and y
directions, its eigenvectors φn come in degenerated pairs
with identical form, respectively polarized along x and y.
In particular, as a result of a discrete nodal domain
theorem [15,38–40], the lowest energy modes of M1 have
the geometry of translational modes. Increasing the tension,
the spectral properties ofM1 progressively dictate that of the
elastic structure, thereby favoring the emergence of two
degenerated low-energy modes, with geometries akin to
translation. These are the perfect conditions for selecting the
SCO regime at large tension [14]. This is why any elastic
structure, which, in the absence of tension, exhibits some
form of CA, different from the condensation on modes akin
to translation, will eventually transition to the SCO regime
when tension is increased. This argument is strictly valid in

the case of a homogeneous dilation, but one expects it to
persist as a design principle for transition between CA in
elastic structures which do not dilate homogeneously, as
long as tension is evenly distributed. In the case of the
Gerris, the inner ring is rigid, the dilation is thus not
homogeneous, and Eq. (3) does not apply. Would it hold,
the two branches of eigenfrequencies, corresponding to the
translation and rotation modes meet at infinite tension, and
one would expect a transition at infinite α. We however saw
that the nonlinearities enforce it at tensions that can be
reached experimentally.
We confirm this design principle by considering a large

honeycomb lattice, composed of N ¼ 180 nodes, pinned at
its hexagonal edges [Fig. 4(a)]. Under small tension this
lattice has a rotation mode jRi that lies at the bottom of its
vibrational spectrum [Fig. 4(b)]. As tension increases, the
energies of both the degenerated translational modes and

(a) (b)

(c)
(d)

FIG. 4. Active honeycomb’s dynamics as a function of
lattice tension. (a) Elastic architecture cartoon (N ¼ 180).
(b) Normal modes’ spectrum as a function of lattice tension
α − 1. The red (resp. blue) solid line corresponds to the rotation
mode (resp. degenerated translational modes); see the Supple-
mental Material [15] for the full spectrum. The dashed black
vertical line highlights the crossing of energies. (c) Normalized
condensation fractions on the rotation mode λ̃R (circles) and on
the translational modes λ̃T1

þ λ̃T2
(squares) as a function of lattice

tension α − 1. Colored markers and solid lines (resp. white
markers and dashed lines) stand for simulations performed within
the harmonic approximation (resp. including geometrical non-
linearities). The dark red (resp. orange) branch represents the
aperiodic (resp. periodic RT) GAR regime, while the blue
branches represent the TT regime. (d) Projection of the polarity
field dynamics in the steady states for the RT (left) and TT (right)
regime (vertical axis, hRjn̂i; equatorial plane, hTx=yjn̂i).
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the rotation mode increase, but at different paces, and
eventually cross each other for α ¼ αc ≃ 1.1, as expected
from Eq. (3). When simulating the dynamics of the active
honeycomb, within the harmonic approximation, with
π ¼ 0.055, we do confirm the presence of a discontinuous
tension-controlled transition between two linearly stable
actuation regimes, SCO and GAR [Fig. 4(c)]. Here, the
dynamics condense on modes that are not fully delocal-
ized, thus the condensation fractions are normalized by
the participation ratio of the modes λ̃k ¼ λk=Qk, with
Qk ¼ ðPi jφi

kjÞ2=N [15,41].
The SCO is a TT regime, very similar to the one

discussed above [Fig. 4(d) and Supplemental Material
Movie 6 [15] ], except for additional fluctuations taking
place outside of the equatorial plane. Indeed, the transla-
tional modes being not fully delocalized, there is room for a
spatial coexistence of a collectively actuated region at the
center of the system with a frozen-disordered one close to
the boundary [14]. The GAR regimes, with strictly positive
λ̃R, exhibit richer dynamics than in the case of the Gerris:
for small enough tension, the GAR regimes are aperiodic,
because of the many low-energy modes, which couple to
the rotational and translational modes [15]. At large enough
tension, one recovers the RT1 regime, condensed on a RT
plane in mode space [Fig. 4(d) and Supplemental Material,
Movie 7 [15] ], modulo some fluctuations of the same
origin as in the TT regime. Annealing from small to large
tension, the RT regime transitions to the TT one for a
tension α > αc [Fig. 4(c)]. Additionally, performing the
backward annealing, the TT branch becomes unstable for a
tension α < αc. In the absence of geometrical nonlinear-
ities, the observed hysteretic transition must be attributed to
the nontrivial selectivity of CA [14]: CA preferably takes
place on a pair of modes that are maximally extended and
locally orthogonal. As demonstrated by the open symbols
and dashed lines in Fig. 4(c), geometrical nonlinearities do
not alter the above picture.
On the metamaterial science side, our Letter demon-

strates the existence of a generic mechanism for discon-
tinuous transitions between different actuation branches. In
the realm of biophysics, it sheds light on the emergence of
SCO and GAR regimes, and offers an explanation for the
transition observed, when contractility or confinement
generates internal stresses.
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Appendix: Mapping the active Gerris’s regimes
onto single particle dynamics in harmonic potentials.—
The active Gerris’s TT regime [Fig. 2(d)] is a strict
condensation of the active dynamics on the two
translational modes. This is possible because the
translational modes are fully delocalized QTx

¼ QTy
¼ 1,

and locally orthogonal. Because they also are degenerated,
the TT regime strictly maps onto the spontaneous
oscillation of a single particle in a symmetric parabolic
potential [14,15,36]. All quantities of interest can be
calculated analytically, e.g., its oscillation frequency Ω
writes

Ω ¼ �ωT

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π − ω2

T

q
; ðA1Þ

where ω2
T refers to the squared eigenfrequency of the two

degenerated translational modes.
The active Gerris’s RT regimes are condensations of

the dynamics on a RT plane, defined by the rotation mode
and a linear combination of the two translational modes
[Fig. 2(d)]. While the two selected modes are also fully
delocalized QR ¼ QT ¼ 1, they are not locally orthogonal.
This prevents a strict condensation: during the turnarounds,
some active force is transformed into mechanical stress of
the rigid inner structure, and the polarity field enters inside
the circle in the plane of the two selected modes [Figs. 2(d)
and 5(a)]. More importantly, the translational and rotation
modes are not degenerated [Fig. 2(b)]: tension changes
the energy ratio between the two selected modes. Most of
the phenomenology can still be understood by studying the
dynamics of a single particle trapped in elliptic harmonic
potentials [15,37]. As the energy ratio between the two

(a) (b)

(c) (d)

FIG. 5. Mapping between the active Gerris’s RT regimes and
the dynamics of a single particle trapped in an elliptic harmonic
potential. Illustration in the case of regimes RT2 ↔ E2. (a),(b)
ActiveGerris’s RT2 regime (α ¼ 1.4); see Fig. 2(d). Polarity field
dynamics, restricted to the plane of the two selected modes (a),
and as a function of time (b). The solid red (resp. solid blue) line
represents aR [resp. aT , where T refers to the linear combination
of the two translational modes giving the orientation of the plane
in Fig. 2(d)]. E2 dynamics of a single particle trapped in an
elliptic harmonic potential, softer along the y direction (ω2

x ¼ 1.0,
ω2
y ¼ 0.36). Polarity field dynamics in the x–y plane (a), and as a

function of time (b). The solid red (resp. solid blue) line
represents ay (resp. ax). In (a),(c), the dashed black circle
represents the unit circle.

PHYSICAL REVIEW LETTERS 130, 028201 (2023)

028201-5



modes increases, the active particle orbits along circles,
ellipses, lemniscates, and higher-order lemniscates [37], the
elliptic regimes En [15]. In mode space, these limit cycles
are more and more condensed along the soft direction.
Similarly to the active Gerris’s RTn regimes, the En
regimes are separated by hysteretic and discontinuous
transitions. As a final remark, note that the discontinuous
transition studied in the main text is thus from an elliptic
regime E1 to a circular one E0, standing on planes
perpendicular to one another.
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