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Models based on spins or hysterons with appropriately chosen interactions can capture advanced
memory effects in complex materials, such as transients in repeatedly compressed crumpled sheets or
sequential computing in driven metamaterials. However, unphysical self-loops dominate the response
when interactions are chosen randomly, undermining statistical approaches. Here, we uncover the
origin of self-loop proliferation in randomly coupled models. We introduce the weakly asymmetric
ensemble to suppress self-loops and then develop interaction ensembles to strictly eliminate these.
Finally, we use these ensembles to explore the statistics of large systems. Our work highlights the
subtle role of interaction symmetries and paves the way for statistical studies of the sequential
response and memory effects in complex, multistable materials.

Sequences of transitions between metastable states
govern the hysteresis [1], memory [2–9], emergent com-
puting [10–12], sequential shape-morphing [13, 14], and
adaptive behavior [15–17] of driven dissipative materials,
such as crumpled sheets, disordered media, and meta-
materials [9]. As these states often consist of local, bi-
nary elements, with or without hysteresis, the response
can be described by models of interacting hysterons or
binary spins at zero-temperature (Fig. 1a). While mod-
els without interactions are well understood [1, 18–20],
interactions are crucial for capturing complex responses
such as avalanches, transients, and multiperiodic cycles
[5, 21]. In the rare cases that interactions can be mea-
sured [7, 10] or modeled [12, 22–26], they enable accurate
predictions of the systems response and memory effects
[5, 8, 10, 12, 26–28]. However, often the detailed inter-
actions are unknown. Moreover, an important goal is to
understand classes of system through statistical studies
of ensembles of interaction coefficients [4, 5, 21, 29–31].

The focus of this Letter are self-loops, avalanches that
get trapped in a repeating sequence of states which never
settle (Fig. 1b) [21, 32–35]. These overwhelm the re-
sponse in large randomly coupled systems, yet are un-
physical for the dissipative systems we aim to model.

The interaction matrix cij represents how element i’s
flipping threshold is influenced by element j, and its sym-
metry plays an important role. For spin systems, sym-
metric interactions produce transitions that lower an en-
ergy and are thus free of self-loops [34, 36], and we show
here a similar result for symmetrically interacting hys-
terons. For spins, non-symmetric interactions have been
associated with energy input and drive oscillations or self-
loops [32–35, 37–41]. However, for hysterons, asymmetric
interactions are not incompatible with energy dissipation.
As hysterons are strongly nonlinear, the Maxwell-Betti
reciprocity relations no longer apply [42] and do not re-
strain cij to be symmetric. Instead, the asymmetry of
the interaction matrix arises from differences in hysteron
strength. For example, in a crumpled sheet, flipping a
hysteron associated with a small ridge (i) weakly affects
a larger ridge (j), while flipping hysteron j more strongly
impacts i: |cij | < |cji| (Fig. 1c). Indeed, when mea-
sured or modeled, hysteron interactions are asymmetric
[10, 12, 26], and asymmetry is crucial to capture observed
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FIG. 1: Self-loops in driven multistable systems. (a)
Schematic of a crumpled sheet where local ridges act as
hysterons [7]. (b) Partial transition graph. The states
(S0, S1, . . . ) undergo transitions when the driving H crosses
the indicated switching fields (up: red, down: blue). If
the system starts in state S0 and H is increased above the
switching field H+(S0), this causes the self-loop S0 → S1 →
S2 → S3 → S0 → . . . when the switching fields satisfy
H+(S1)<H+(S0), H−(S2)>H+(S0) and H−(S3)>H+(S0)
(Supplemental Material). (c) Variations in hysteron strength
lead to asymmetric interactions (|cij | > |cji|).

memory effects [5]. We thus face a conundrum: while
asymmetry is necessary, random asymmetric interactions
lead to self-loops inconsistent with dissipative behavior.

Here we first uncover the mechanisms that produce
self-loops and investigate their proliferation. We then
explore self-loops for asymmetric interactions and show
that their probability asymptotes to one in large systems.
We explore strict conditions associated with specific self-
loops, derive precise criteria for short self-loops, and in-
troduce weak asymmetry as a simple, lenient approach
to suppress self-loops. We then present several strict en-
sembles that are completely free of self-loops. Finally,
we explore the statistical properties of avalanches and
the response to cyclic driving in large systems. Our work
opens the route towards statistical studies of the sequen-
tial response of dissipative materials.

Model.— We consider N binary elements, si = ±1,
which form collective states S = (s1, s2, . . . ). The sys-
tem is driven by a global field H, and the stability range
of each element i in state S is given by switching fields



2

H±
i (S). For pairwise interactions:

H±
i (S) = h±

i −
∑
j ̸=i

cijsj , (1)

where h±
i are the bare switching fields of element i. To

model spins, we take h+
i = h−

i , whereas for hysterons,
h+
i > h−

i [1, 19, 20]. The matrix cij , with cii = 0, encodes
cooperative (cij > 0) or frustrated (cij < 0) interactions
that may be asymmetric (cij ̸= cji) [5, 12, 26, 28].

In this model, each state S has a range of stability, en-
coded in state switching fields H±(S) which follow from
the extrema of H±

i (S): H+(S) := mini−(H
+
i (S)) and

H−(S) :=maxi+(H
−
i (S)), where i± are the indices where

si = ±1. When the system is in state S0 and H is in-
creased above H+(S0) or decreased below H−(S0), state
S0 loses stability and its unstable hysteron flips. De-
pending on nu, the number of unstable hysterons in the
resulting state S1, three different scenarios arise [21, 31].
When nu = 0, state S1 is stable; when nu = 1, state S1

is unstable and its unstable hysteron flips; when nu > 1,
multiple hysterons are unstable. The latter case, which
is abundant in large systems (Supplemental Material),
leads to a race condition, and requires a dynamical rule to
specify the next step in the transition [10, 12, 21, 28, 31].
Importantly, in the remainder, we only flip the most un-
stable element [5]; this rule is physically plausible and
corresponds to the zero-temperature limit of the Glauber
dynamics [43, 44] (for other rules, which can have a dras-
tic impact, see Supplemental Material).

Hysterons with symmetric interactions.— Although
hysteron interactions are not expected to be symmetric,
numerical sampling reveals that symmetric interactions
consistently avoid self-loops. To rigorously demonstrate
this, one can show that the quantity V (S), written as:

V (S) = −
∑
i−

si(H − h+
i ) +

1

2

∑
j ̸=i

cijsisj


−
∑
i+

si(H − h−
i ) +

1

2

∑
j ̸=i

cijsisj

 ,

(2)

is a Lyapounov function of the system, which guarantees
that the latter always converges toward a stable state,
and thus prohibits self-loops. (see Appendix A)

Random asymmetric coupling: gaps and self-loops.—
We now exploit random interactions, where cij and cji
are sampled independently. For any value of H, each
isolated element has one stable phase, or two within the
hysteretic range. Without interactions, stable states can
be easily formed by combining stable elements. However,
interactions make the switching fields dependent on the
collective state, effectively randomizing stability ranges
and creating gaps, ranges of H where no state is stable.

We find two related scenarios where interactions lead
to self-loops. We consider state S going unstable by the
driving crossing a critical value Hc. In the first scenario,
Hc lies in a gap, and the system gets inevitably trapped
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FIG. 2: Statistical measures for gaps and self-loops scale when
plotted as function of NJ0 (105 samples; color from light to
dark as N increases from 2 to 10). (a) Probability P 0

g of
finding a gap at H = 0 (dashed line indicates slope 4). (b)
Averaged fraction of gaps fG, where fG is defined as the ratio
of the size of intervals where no stable states exist divided
by H+(− − . . . ) − H−(+ + . . . ) (dashed line indicates slope
4). (c) Probability P 0

sl of finding at least one self-loops at
H = 0 (dashed line indicates slope 4). (d) Probability Psl

of finding at least one self-loop for any value of H (dashed
line indicates slope 3). Inset: The probability to be self-loop
free, 1 − Psl, decays to zero exponentially with N for large
couplings (NJ0 = 102).

in a self-loop. In the second, the system also gets trapped,
despite the presence of other stable states at H = Hc.

To investigate the statistics of gaps and self-loops, we
sample the model using an event-driven algorithm [5].
We consider collections of hysterons with thresholds in a
compact range [5, 8, 30], and for the bare switching fields,
we flatly sample the midpoints hc

i = (h+
i +h−

i )/2 from the
interval [−1, 1] and the interaction coefficients cij from
[−J0, J0]. Unless noted otherwise, we flatly sample the
spans σi = h+

i − h−
i from [0, 0.5].

We find that the probability P 0
g of a gap, meaning the

absence of a stable state at H = 0, and the fraction of
gaps fG, both increase as power laws when NJ0 ≪ 1
(Figs. S3a-b). For NJ0 ≫ 1, they saturate at significant
values. The probability that states have a finite stability
range decreases exponentially with N : for large N , sta-
ble states become rare, prohibiting statistical studies of
transitions (Supplemental Material).

Gaps imply self-loops, but self-loops can also occur
without gaps: the probability of a self-loop occurring for
a random state at H = 0, P 0

sl, is larger than the corre-
sponding gap probability P 0

g (Fig. S3c and Supplemental
Material). Similarly, we calculated the probability of ob-
serving a self-loop at any value of H, Psl, by starting
from every stable state, in/decreasing H, and checking
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FIG. 3: (a) Example of the state evolution in a self-loop
(N = 6, L = 4, ne = 2). (b) The only fundamental L = 4
self-loop (up/down transitions: red/blue arrows). (c) Two
out of six possible L = 6 fundamental self-loops — these are
the only ones realizable with WA interactions (see Table I).
(d) Location of L = 4 self-loops for N = 2 hysterons, where
we fix ∆hc = 1 and vary the minimal span σ from 0 to 3 in
steps of 1 (light to dark green).

whether the ensuing transition yields at least one self-
loop. We find that Psl exceeds the corresponding fraction
of gaps, and approaches one in large, strongly coupled
systems (Fig. S3d; Supplemental Material). This domi-
nance of self-loops is robust; hysterons with fixed spans
σi = 0.5 and binary spins where σi = 0 also have Psl → 1
in the large coupling limit (Supplemental Material) [32–
35]. Hence, self-loops, incompatible with the dissipative
systems we aim to model, are unavoidable for random in-
teractions, and for large systems completely overwhelm
the response.

Proliferation of self-loops.— Each self-loop is associ-
ated with a set of linear inequalities of (h±

i , cij), and oc-
curs in a polytope in parameter space [5, 21, 30, 31]. By
identifying all potential self-loops, one could, in principle,
determine all corresponding polytopes; the complement
of their union is then free of self-loops. However, the
number of self-loops grows extremely rapidly with N .

We characterize each self-loop by its length L and by
the ne ≤ N elements that are involved (Fig. S9a). We
focus on fundamental loops, which are defined as the
unique loops that involve all elements (ne = N) up to
permutations (i.e., the self-loop (−−)→(−+)→(++)→
(+−)→ . . . is equivalent to the loop in Fig. S9b). We de-
termine the potential number of fundamental loop struc-
tures, M(ne, L), from the combinatorics of flip sequences,
and calculate the number of realizable loops with pairwise
interactions, MR(ne, L) (Supplemental Material). Both
grow rapidly with ne and L (Table I). In particular, for
the shortest fundamental loops, M(ne, L = 2ne) grows
as 1, 6, 56, 796, . . . for ne = 2, 3, 4, 5, . . . (Figs. S9-b and
c for ne = 2, 3), and our data suggests that each of these
is realizable. The number of actual self-loops and poly-
topes grows even faster with N . Introducing ne elements
into a larger group of N elements, and including permu-
tations, maps each fundamental loop to a significantly
larger number of actual loops and polytopes, fueling a
further combinatorial explosion.

Lenient and strict strategies.— The proliferation of the

L/ne 2 3 4 5

4 1/1/0 – – –

6 – 6/6/2 – –

8 – 2/0/0 56/56/24 –

10 – – 176/114/4 796/796/376

12 – – 420/145/1 9028/x/x

14 – – 448/48/0 76640/x/x

16 – – 112/4/0 535584/x/x

Table I: Numbers of fundamental self-loops of size L involving
ne elements. Note that 4 ≤ L ≤ 2N and log2 L ≤ ne ≤ L/2,
as each element undergoes an even number of flips; loops with
ne elements can visit at most 2ne states; and self-loops of size
2 are excluded by h+

i ≥ h−
i (Supplemental Material). The

numbers in each box represents M(ne, L), MR(ne, L), and
MW (ne, L), respectively. Note that the number of longest
fundamental loops, M(ne, L = 2ne), are given by the num-
ber of directed Hamiltonian cycles in the binary ne-cube
(1, 2, 112, 15109096, . . . for ne = 2, 3, 4, 5, . . . ) [45, 46].

number, length, and complexity of self-loops for large N
makes deriving explicit and sharp conditions that identify
all self-loops unfeasible. We thus first introduce a lenient
strategy that fully eliminates the shortest self-loops and
suppresses—though not completely eliminates—longer
ones. We then define strict ensembles that entirely elim-
inate self-loops of any length but are overly restrictive.

Lenient strategy: weak asymmetry.— Short (L = 4)
loops are sufficiently simple that we can derive their poly-
tope conditions easily. First, for the simplest case of
L = 4 self-loops for two spins, we find that a gap of size
|∆c|− |∆hc| opens up when c12c21 < 0 and |∆c| > |∆hc|,
where ∆c := c12 − c21 and ∆hc := hc

2 − hc
1. These condi-

tions are sufficient and necessary for the emergence of a
self-loop. For two hysterons, the lower bound of the spans
σi is crucial: if it is zero, the same conditions apply, but
if it is positive, there is a larger range in parameter space
that is guaranteed to be free of L=4 self-loops (Fig. S9d).
Finally, we can extend these conditions to arbitrary N ;
as for L = 4 self-loops only two elements i and j are
involved, we can prohibit short self-loops by requiring
cijcji ≥ 0 for all pairs (i, j) (For details, Supplemental
Material).

We thus introduce the notion of weak asymmetry
(WA): cijcji ≥ 0 for all pairs (i, j). Not only does WA
eliminates L = 4 self-loops, but it also suppresses the
number of longer self-loops that are realizable (Table I,
and Supplemental Material). Statistical sampling reveals
that WA is an effective strategy to suppress self-loops. In
particular, P 0

sl → 0 for large N , allowing to sample in-
dividual transitions, although Psl slowly grows with N :
the combinatorial possibilities of finding a self-loop dom-
inates in large systems (Supplemental Material). Never-
theless, for intermediate N , WA strongly suppresses self-
loops, e.g., Psl ≈ 14% for large couplings and N = 10.
Hence, WA strictly prohibits short self-loops and sup-
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FIG. 4: Simulations of large systems of coupled hysterons in
the constant-columns (left) and symmetric (right) ensembles
(N = 16, 32, . . . , 512 for increasingly dark colors). (a-b) En-
semble averaged avalanche size ⟨A⟩. To determine these, we
initialize the system at a stable state S0 at H = 0, increase H,
and measure the number of flips before the system settles on
a stable state. (c-d) Ensemble averaged transient ⟨τ⟩, where
τ is the number of cyclic drive cycles after which the system
reaches a periodic orbit (Supplemental Material).

presses longer self-loops.
Strict ensembles.— We now present ensembles of

asymmetric interactions which strictly prohibit self-
loops. First, if all interactions are positive (cij ≥ 0),
avalanches exhibit monotonic evolution of the magneti-
zation m := Σsi, thus prohibiting self-loops (Appendix
B). If all interactions are negative, and either cik = −dk
(constant-columns) or cki = −dk (constant-rows), where
dk ≥ 0, self-loops are also prohibited. In the former
case, the interactions prohibit scrambling [12], which in
turn prohibits self-loops (Appendix C); in the latter case,
the interactions only allow avalanches of length two, too
short to form a self-loop (Appendix D and Supplemental
Material). We note that the statistics of, e.g., avalanches
and self-loops drastically depends on the dynamical rule
in all these ensembles. In particular, when race condi-
tions are not allowed [12, 21, 31], constant-columns in-
teractions restrict the avalanche size A ≤ 2, whereas flip-
ping the most (or least) unstable elements leads to much
larger A (Fig. 4-a); moreover, flipping all unstable ele-
ments simultaneously instead of only the most unstable
one leads to a dominance of L = 2 self-loops for sym-
metric, constant-columns and constant-rows interactions
(see Supplemental Material).

The strictly self-loop-free ensembles allow us to study
the statistics of unprecedentedly large systems of inter-
acting hysterons, including the distributions of avalanche
sizes A, transient times τ , and multiperiodicities T of
orbits under cyclic drive (Fig. 4; see Supplemental Ma-

terial). We find that these significantly depend on the
ensemble, e.g., avalanches and transients are shorter in
the constant-columns ensemble than in the symmetric
ensemble, and their dependence on NJ0 is qualitatively
different.

Discussion.— Self-loops are forbidden in dissipative
systems and an important feature of active systems
[41, 47]. As the parameter regions where self-loops occur
form a vast cloud of complex polytopes, it is unlikely that
simple, precise expressions can be found to distinguish re-
gions with and without self-loops. We introduce lenient
and strict ensembles, and note that the symmetric, WA,
strictly positive, and constant-columns interactions can
all be realized experimentally [5, 12, 26, 28] (Supplemen-
tal Material).

Our work suggests multiple directions for future re-
search. First and foremost is the need to explore ex-
plicit mappings from physical models to hysteron mod-
els. Different ensembles and dynamical rules result in
distinct statistical properties (Fig. 4). Furthermore, since
well-behaved dissipative models are inherently self-loop
free, the dynamical rules and interaction ensembles asso-
ciated with them must also ensure self-loop free behav-
ior. Indeed, for networks of overdamped bistable springs
[7, 12, 26, 48], such a mapping yields strongly asym-
metric interactions without self-loops. Hence, physical
mappings are a compelling subject for further investi-
gation. Second, self-loops and multiperiodic responses
under cyclic driving [5] have links that can be revealed
using the recently introduced concept of the transition
scaffold [31]. In particular, we suggest that multiperiodic
responses (such as an orbit of period T = 3 as compared
to the period of the driving) can be constructed start-
ing from its corresponding self-loop (such as Fig. S9c-
right). Finally, prohibiting self-loops is mirrored in recent
works that aim to understand the emergence of oscillat-
ing dynamics through non-reciprocal phase transitions,
and we suggest investigating other interaction ensembles
(like WA, constant-columns, or otherwise derived from
an underlying model) in this context [40, 41, 47].
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Appendix A: Systematic convergence for symmetric
interactions.

Here we show that symmetric interactions yield tran-
sitions that lower a Lyapounov function, first focusing
on spins (for which h+

i = h−
i = hc

i ) following standard
approaches [37, 49], and then extending the result to hys-
terons. Consider an initial state S0 and a value of the
drive H such that element p is unstable, which implies:



5

• H > hc
p −

∑
j ̸=p cpjs

0
j , if s0p = −1 ,

• H < hc
p −

∑
j ̸=p cpjs

0
j , if s0p = 1 ,

which can be rewritten as:

s0p

H − hc
p +

∑
j ̸=p

cpjs
0
j

 < 0 . (A1)

Let us now introduce the function V , reminiscent of a
Sherrington-Kirkpatrick model with random fields:

V (s) = −
∑
i

si(H − hc
i ) +

1

2

∑
j ̸=i

cijsisj

 ,

= −
∑
i

si(H − hc
i )−

1

2

∑
i

∑
j ̸=i

cijsisj ,

(A2)

where the first and second term on the r.h.s. of Eq. (A2)
can be seen as a field and interaction term. We aim
to compute ∆V = V (S1) − V (S0), where S1 and S0

are the state before and after snapping element p, i.e.
s1i̸=p = s0i ̸=p, and s1p = −s0p. Clearly, the terms with
elements different than p will not contribute to ∆V , and
by splitting the sums accordingly, we obtain:

∆V = −s1p(H − hc
p) + s0p(H − hc

p)−
1

2

∑
i ̸=p

cipsis
1
p +

∑
j ̸=p

cpjs
1
psj −

∑
i ̸=p

cipsis
0
p −

∑
j ̸=p

cpjs
0
psj

 , (A3)

which can be simplifed to:

∆V = 2s0p

(H − hc
p) +

1

2

∑
j ̸=p

(cjp + cpj) sj

 , (A4)

where we repeatedly use that for j ̸= p, s0j = s1j =: sj
For the case of symmetric interactions, i.e. cjp = cpj , we
find:

∆V = 2s0p

(H − hc
p) +

∑
j ̸=p

cpjsj

 . (A5)

Inserting the instability condition for element p, Eq. (A1)
yields ∆V < 0. Therefore, the function V is strictly de-
creasing for each single flip, which implies that the system
cannot be trapped in a self-loop and must always evolve
toward a stable state. Note the importance of the factor
1/2 in Eq. (A2) in order to obtain the final result. This
demonstration can be extended to finite span hysterons,
by explicitly making the distinction between hysterons
with positive and negative phase, and their respective
thresholds, producing Eq. 2 of the main text.

Appendix B: Positive interactions.

In this section, we show that for positive (ferromag-
netic) interactions, i.e. cij ≥ 0, the system cannot get
trapped into a self-loop. A self-loop is a cyclic avalanche:
the system must come back to a previously visited unsta-
ble state. However, for positive interactions, each step in
an avalanche ’goes in the same direction’, i.e., the mag-

netization m :=
∑

i si evolves monotonously [21, 50].
This prevents avalanches from revisiting earlier states,
thus prohibiting self-loops, irrespective of the specific rule
used to resolve race conditions (Supplemental Material).

Appendix C: Constant-columns interactions.

We now clarify why constant-columns (cik = −dk,
dk ≥ 0) define a self-loop-free interaction ensem-
ble. First, for negative (antiferromagnetic) interactions,
avalanches (including self-loops) must be composed of
alternating up/down transitions [21]. For L ≥ 6, such
self-loops exist (Fig. S9-c, and Supplemental Material).
However, all such self-loops violate loop-RPM, which re-
quires scrambling: the ordering of the switching fields
must be state-dependent [21]. Constant-columns inter-
actions do not allow for scrambling [12], therefore this
ensemble strictly prevents all self-loops.

Appendix D: Constant-rows interactions

We now show that in the constant-rows ensemble
(cki = −dk, dk ≥ 0), avalanches consist of at most
two hysteron flips, which is too short to allow self-loops.
Without loss of generality, we consider an up avalanche
initiated from state S0 by an increase of H up to H+

p (S0),
triggering the flipping of hysteron p from sp = −1 to
sp = 1, and leading to state S1. Since we have negative
interactions, avalanches must be composed of alternating
up/down transitions, so that the next step would be the
flipping of hysteron q from sq = 1 to sq = −1 leading
to state S2. To show that S2 is stable to additional up
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flipping events, we first show that H+
i (S0) = H+

i (S2) for
i ̸= p, q. Using that in this ensemble cip = ciq, and that
s0p = −1 and s0q = 1, we find that

H+
i ̸=p,q(S

0) = h+
i −

∑
j

cijs
0
j (D1)

= h+
i −

∑
j ̸=p,q

cijs
0
j − cips

0
p − ciqs

0
q (D2)

= h+
i −

∑
j ̸=p,q

cijs
0
j . (D3)

Similarly, using that s2p = 1 and s2q = −1, we find that

H+
i̸=p,q(S

2) = h+
i −

∑
j ̸=p,q

cijs
2
j , (D4)

and as s2j ̸=p,q = s0j ̸=p,q, we conclude that H+
i (S0) =

H+
i (S2) for i ̸= p, q. Since in state S0 all hysterons

i ̸= p, q are stable, they are also stable in state S2. More-
over, both hysterons p and q are stable in state S2 at
H = H+

p (S0): indeed H−
p (S2) = H+

p (S0) − σp − 2dp <

H+
p (S0), and hysteron q just flipped. Therefore, the

longest possible avalanche in this interaction ensemble
consists of two steps. By the same argument, this result
also holds for other race conditions which involve flipping
hysterons one by one (Supplemental Material).
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Supplemental Material: Proliferation and prohibition of self-loops in ensembles of
interacting binary elements

Paul Baconnier1, Margot H. Teunisse1,2 and Martin van Hecke1,2

1AMOLF, 1098 XG Amsterdam, The Netherlands.
2Huygens-Kamerlingh Onnes Laboratory, Leiden University, 2300 RA Leiden, The Netherlands.

In the main manuscript, we investigate the root causes and statistics of self-loops in ensembles of interacting binary
elements, and we find several strict ensembles that are completely free of self-loops. In this document, we first
elaborate on the conditions under which a self-loop emerges in the transition-graph shown in Fig. 1 of the main text.
In Secs. 2 and 3, we discuss the probability of race conditions and the probability that a given state has a finite
stability range as a function of coupling strength, for randomly-coupled spins and hysterons. In Secs. 4 and 5, we
provide numerical evidence the problem of overwhelming self-loops is similar for spins instead of hysterons, and for
ensembles of hysterons with equal spans. In Sec. 6, we further analyze the relationship between gaps and self-loops.
In Sec. 7, we provide numerical evidence that self-loops also overwhelm the response of large systems in the case of
weakly asymmetric interactions. In Sec. 8, we derive the conditions to prevent L = 4 self-loops for N = 2 spins and
N = 2 hysterons with equal spans, and sample L = 4 self-loops for large N . In Sec. 9, we provide physical illustrations
for the different classes of well-behaved models. In Sec. 10, we analyze the role of the different race conditions rules
in the different families of models. In Sec. 11, we give details on the algorithm to generate all possible self-loops,
and illustrate the different possible self-loop structures for different sizes L. Finally, in Sec. 12, we discuss numerical
simulations of large systems of self-loop-free models.

1: Conditions for a self-loop of size 4 in the general model

In this section, we elaborate on the conditions under which a self-loop emerges in the graph represented in Fig.
1 of the main text. A sufficient condition for self-loops is that H is in a range where all the states S0, S1, S2 and
S3 are unstable. This situation is realized when H is larger than the two up switching fields H+(S0) and H+(S1),
smaller than the two down switching fields H−(S2) and H−(S3), and when both H+(S0) and H+(S1) are smaller
than H−(S2) and H−(S3).

Starting from a stable state and driving the system up to instability, what are the conditions under which the
transition triggers a self-loop? In this case, we evaluate the possibility for a self-loop for H immediately above (below)
the up (down) switching field of a given state. For each of the four possible starting states, we can write down the
inequalities needed so that the self-loop shown on Fig. 1 of the main text is realized:

• State S0: this state becomes unstable as soon as H > H+(S0), and a self-loop emerges at instability when:

H+(S1) < H+(S0),

H−(S2) > H+(S0),

H−(S3) > H+(S0),

(S1)

where each relationship enforces that a given state of the loop is unstable. Hence, a self-loop is triggered when:
H+(S1) < H+(S0) <

(
H−(S2), H−(S3)

)
(see caption of Fig. 1 of the main text).

• State S1: this state becomes unstable as soon as H > H+(S1), and a self-loop emerges at instability when:

H+(S0) < H+(S1),

H−(S2) > H+(S1),

H−(S3) > H+(S1).

(S2)

This produces the condition: H+(S0) < H+(S1) <
(
H−(S2), H−(S3)

)
.

• State S2: this state becomes unstable as soon as H < H−(S2), and a self-loop emerges at instability when:

H−(S3) > H−(S2),

H+(S0) < H−(S2),

H+(S1) < H−(S2).

(S3)
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Yielding:
(
H+(S0), H+(S1)

)
< H−(S2) < H−(S3).

• State S3: this state becomes unstable as soon as H < H−(S3), and a self-loop emerges at instability when:

H−(S2) > H−(S3),

H+(S0) < H−(S3),

H+(S1) < H−(S3).

(S4)

Yielding:
(
H+(S0), H+(S1)

)
< H−(S3) < H−(S2).

2: Race conditions

Here, we investigate the probability of race conditions for collections of spins (σi = 0), hysterons (σi flatly sampled
from [0, 0.5]), and hysterons with equal spans (σi = 0.5).

When a state S0 becomes unstable and one of the hysterons flips to produce state S1, the number of unstable
hysterons in S1 can be either zero (S1 is stable), one, or more than one. If more than one hysteron is unstable,
this causes a race condition. We calculate the race-condition probability PRC – the probability of more than one
hysteron being unstable in state S1 – by selecting a state S0 that is stable at H = 0, increasing H past H+(S0),
and investigating the number of unstable hysterons of S1 at H = H+(S0). We find that PRC increases as (NJ0)

2

for NJ0 ≪ 1, and saturates at a significant value that increases towards 1 for large N for NJ0 ≫ 1 (Figs. S1). We
observe only minor differences between spins, hysterons, and hysterons with equal spans.
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FIG. S1: Statistics of race conditions for randomly-coupled two-states elements. Probability PRC of race conditions
(ensemble of 2 × 104 transitions S0 → S1), for an initial state S0 stable at H = 0; the black dashed line represents the slope
2. Markers are color coded from light to dark red as N increases, with N ∈ [2, 3, 4, 5, 6, 7, 8, 9, 10]. (a) Spins (σi = 0). (b)
Hysterons (σi flatly sampled from [0, 0.5]). (c) Hysterons with equal spans (σi = 0.5).

3: Number of stable states

In this section, we measure the probability that a given state has a finite stability range for collections of spins
(σi = 0), hysterons (σi flatly sampled from [0, 0.5]), and hysterons with equal spans (σi = 0.5).

Independently of the microscopic hysteresis and coupling strength, the probability Ps that a random state S among
the 2N possible states is stable for some value of the driving H, i.e. H+(S) > H−(S), asymptotes to 0 for large
N . Indeed, for spins, it is easy to show that there always exists only N + 1 potentially stable states, so that
Ps = Pspins = (N + 1)/2N (Fig. S2-a).

For hysterons and hysterons with equal spans, we find that Ps asymptotes toward Pspins in the large coupling limit,
i.e., NJ0 ≫ 1 (Figs. S2-b and c). However, in the small coupling limit, Ps is larger than Pspins. In this case, Ps

is dictated by the statistics of the Preisach graphs that are sampled, which is itself dictated by the statistics of the
different orderings of the switching fields h±

i . Interestingly, in the case of hysterons with equal spans, the Preisach
graphs which are sampled generally contain more stable states. Note that in all case, Ps still asymptotes to 0 even in
the small coupling limit, but slower than in the case of spins.
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FIG. S2: Fraction of potentially stable states. Probability that a randomly chosen state S has a finite stability range;
scaled by Pspins = (N +1)/2N . Markers are color coded from light to dark red as N increases, with N ∈ [2, 3, 4, 5, 6, 7, 8, 9, 10].
(a) Spins (σi = 0). (b) Hysterons (σi flatly sampled from [0, 0.5]). (c) Hysterons with equal spans (σi = 0.5).

4: Case of binary spins

In this section, we reproduce the simulations of Fig. 2 of the main text, focusing on the case of randomly-coupled
spins, i.e. σi = 0 for all the elements (Figs. S3).

Let us focus on the similarities between spins and hysterons with distributed spans. In both cases, the statistical
weight of gaps increases as a power law for NJ0 ≪ 1, and saturates toward a significant value for NJ0 ≫ 1 (Figs. S3-a
and b). Moreover, the probability of finding at least one self-loop for any H increases as a power law for NJ0 ≪ 1,
and saturates toward a constant value for NJ0 ≫ 1 (Fig. S3-d), which asymptotes to 1 as N increases (Fig. S3-d,
inset). Therefore, the response of large, strongly coupled systems of spins is dominated by self-loops.

There are however subtle differences with the case of hysterons. In particular, for spins, all observables grow slower
with NJ0 but are bigger than for hysterons for NJ0 ≪ 1 (there are more gaps and self-loops for spins than for
hysterons in the small coupling limit). Also, for NJ0 ≫ 1, self-loops are more likely with spins than with hysterons:
for N = 10 and in the large coupling limit (NJ0 = 102), 99.8% of instances exhibit at least one self-loop for spins, while
the probability is 98.5% for hysterons. This is expected given that microscopic hysteresis contributes to preventing
self-loops.
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FIG. S3: Overwhelming self-loops for randomly-coupled spins. Statistical measures for gaps and self-loops scale when
plotted as function of NJ0 and dominate for NJ0 ≫ 1 (105 samples; color from light to dark as N increases from 2 to 10).
(a) Probability P 0

g of finding a gap at H = 0 (dashed line indicates slope 2). (b) Fraction of gaps fg, defined as the mean
of the ratio of the size of intervals where no stable states exist divided by

[
H+(− · · ·−), H−(+ · · ·+)

]
(dashed line indicates

slope 2). (c) Probability P 0
sl of self-loops at H = 0 (dashed line indicates slope 2). (d) Probability Psl of finding at least one

self-loop for any value of H (dashed line indicates slope 2/3). Inset: The probability to be self-loop free, 1−Psl, decays to zero
exponentially with N for large couplings (NJ0 = 102).
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FIG. S4: Overwhelming self-loops for randomly-coupled hysterons with equal spans. Statistical measures for gaps
and self-loops scale when plotted as function of NJ0 and dominate for NJ0 ≫ 1 (105 samples; color from light to dark as N
increases from 2 to 10). (a) Probability P 0

g of finding a gap at H = 0. (b) Fraction of gaps fg, defined as the mean of the ratio
of the size of intervals where no stable states exist divided by

[
H+(− · · ·−), H−(+ · · ·+)

]
. (c) Probability P 0

sl of self-loops at
H = 0. (d) Probability Psl of finding at least one self-loop for any value of H. Inset: The probability to be self-loop free,
1− Psl, decays to zero exponentially with N for large couplings (NJ0 = 102).

5: Case of hysterons with equal spans

In this section, we reproduce the simulations of Fig. 2 of the main text, focusing on the case of randomly-coupled
hysterons with equal spans, i.e. σi = 0.5 for all the elements (Figs. S4).

We find that the probability of finding at least one self-loops for any H saturates toward a constant value for
NJ0 ≫ 1 (Fig. S4-d), which asymptotes to 1 as N increases (Fig. S4-d, inset). However, in the case of hysterons
with equal spans, we find that all observables seem to have a lower cutoff in NJ0 below which no gaps or self-loops
exist. This is expected given the physics of self-loops for N = 2 hysterons (see Fig. 3-d of the main text and next
section). Moreover, also as expected, we find an even lower probability of 98.3% of finding at least one self-loop for
any H for N = 10 and NJ0 = 102 (Fig. S4-d).

6: Relationship between gap and self-loops

In this section, we provide further evidence that self-loops can also occur outside of gaps. We restrict to H = 0,
and we measure the probability of finding a gap P 0

g , and of the emergence of at least one self-loop starting from any
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FIG. S5: Probability of self-loops as a function of the probability of gaps at H = 0, for NJ0 ∈
[
10−1, 102

]
. (a) Spins

(σi = 0). (b) Hysterons with distributed spans (σi flatly sampled from [0, 0.5]). (c) Hysterons with equal spans (σi = 0.5). The
black dashed lines represent y = x; markers are color coded from light to dark red as N increases, with N ∈ [2, 3, 4, 5, 6, 7, 8, 9, 10].
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of the 2N states P 0
sl, while varying J0.

For N = 2 spins (Fig. S5-a), hysterons (Fig. S5-b), and hysterons with equal spans (Fig. S5-c), there is a one-to-one
correspondence between the probability of gaps P 0

g and the probability of self-loops P 0
sl: indeed, in this case, all 4

possible states must be unstable to lead to a self-loop. However, for larger N , we systematically find more self-loops
than gaps, and the difference grows with N and J0. Interestingly, in the limit of small coupling, self-loops and gaps
seem to remain equally likely for spins. In contrast, for weakly-coupled hysterons, the excess of self-loops grows with
N .

7: Weak asymmetry

In this section, we reproduce the simulations of Fig. 2 of the main text, focusing on the case of hysterons with
distributed spans (σi flatly sampled from [0, 0.5]), and restricted to weakly asymmetric interactions, i.e. cijcji > 0 for
all pairs (i, j) (Figs. S6).

There are two main differences with purely random interactions. First, the probability P 0
sl of at least one self-loop

occuring at H = 0 saturates toward a constant value for NJ0 ≫ 1 (Fig. S6-a), which decreases with N : the larger the
system, the smaller the probability for self-loops to occur at H = 0. Moreover, the probability Psl of finding at least
one self-loops for any H saturates toward a constant value for NJ0 ≫ 1 (Fig. S6-b), which does not asymptote to 1
as fast as for purely random interactions, but which nevertheless increases for large N . Therefore, weakly asymmetric
interactions lead to fewer self-loops than random asymmetric interactions, but we still expect that self-loops dominate
the response of large, strongly coupled systems.

8: Self-loops of size L = 4

In this section, we focus on the emergence of L = 4 self-loops.
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FIG. S6: Self-loops statistics for weak asymmetric interactions between hysterons. Statistical measures for self-loops
scale when plotted as function of NJ0 (105 samples; color from light to dark as N increases from 2 to 10). (a) Probability P 0

g

of finding a gap at H = 0 (dashed line indicates slope 5). (b) Fraction of gaps fG, defined as the mean of the ratio of the size
of intervals where no stable states exist divided by H+(− · · ·−), H−(+ · · ·+) (dashed line indicates slope 4). (c) Probability
P 0
sl of self-loops at H = 0 (dashed line indicates slope 5). (d) Probability Psl of finding at least one self-loop for any value of

H; the black dashed line represents the slope 4. Inset: The probability to be self-loop free, 1− Psl, decays monotonously with
N for large enough N , and for large couplings (NJ0 = 102).
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8.1. Gap formation mechanism for N = 2 coupled spins

We consider two coupled spins indexed 1 and 2, such that h+
1 = h−

1 = hc
1 and h+

2 = h−
2 = hc

2 (i.e. σ1 = σ2 = 0),
where we take hc

1 < hc
2. Importantly, the only possible self-loops have size L = 4, such that the system visits all

four possible states in a cycle, and thus the self-loop must occur within a gap. We can compute the upper and lower
switching fields of individual spins for each state:

H+
1 (−−) = hc

1 + c12,

H+
2 (−−) = hc

2 + c21,
(S1)

H−
1 (+−) = hc

1 + c12,

H+
2 (+−) = hc

2 − c21,
(S2)

H+
1 (−+) = hc

1 − c12,

H−
2 (−+) = hc

2 + c21,
(S3)

H−
1 (++) = hc

1 − c12,

H−
2 (++) = hc

2 − c21,
(S4)

and, in the limit of small couplings (|c12|,|c21| ≪ ∆hc, with ∆hc = hc
2 − hc

1 > 0), the upper and lower switching
fields of each state are:

H+(−−) = H+
1 (−−) = hc

1 + c12, (S5)

H−(+−) = H−
1 (+−) = hc

1 + c12,

H+(+−) = H+
2 (+−) = hc

2 − c21,
(S6)

H−(−+) = H−
2 (−+) = hc

2 + c21,

H+(−+) = H+
1 (−+) = hc

1 − c12,
(S7)

H−(++) = H−
2 (++) = hc

2 − c21. (S8)

Note that H+(−−) = H−(+−) and H+(+−) = H−(++): the upper switching field of the state "below" coincides
with the lower switching field of the state "above" (Fig. S7-a). Therefore, in the limit of small couplings, the convention
hc
1 < hc

2 enforces the structure of the Preisach graph represented in Fig. S7-a. Moreover, as the zero-coupling ordering
of the states (−−) ↔ (+−) ↔ (++) is preserved, no gap can open, even with finite interactions.

One hole may open in two mutually-excluding cases: when the ordering of the switching fields in state (−−) (resp.
(++)) is reversed. We focus on the first case without loss of generality. The condition H+

2 (−−) < H+
1 (−−) translates

into:

∆c > ∆hc, (S9)

where ∆c = c12 − c21. Let us assume the condition given by Eq. (S9) is satisfied, and analyze the other states’
switching fields. First, the condition to keep the same switching fields ordering in state (++) can be written as:

H−
2 (++) > H−

1 (++) ⇔ ∆c > −∆hc, (S10)



7

H
hc
1 hc

2

+1+ 1

−1 + 1

+1− 1

−1− 1

(a)

H
hc
2hc

1 +c−c

2c−∆hc

+1+ 1

−1 + 1

+1− 1

−1− 1

(b)

H
hc
2hc

1 −c+c

−2c−∆hc

+1+ 1

−1 + 1

+1− 1

−1− 1

(c)

−4 −2 0 2 4

c21

−4

−2

0

2

4

c 1
2

(d)

c1
2
=
c2

1

c
12 =

−
c
21

2|∆hc|

FIG. S7: Stability ranges for N = 2 binary spins. (a) Zero coupling (c12 = c21 = 0). (b-c) Completely asymmetric
couplings c12 = −c21 = c > 0, i.e. ∆c > 0 (b); c12 = −c21 = c < 0, i.e. ∆c < 0 (c). The solid black, dotted black, and solid
gray lines represent stable configuration, unstable configuration with 2 unstable spins, and with 1 unstable spin, respectively.
Red (resp. blue) arrows represent up (resp. down) transitions. The gray area in (b-c) indicates the range of H with a gap, and
the colored transitions represent the self-loop occuring within this range. (d) Portions of the (c12, c21)-plane leading to L = 4
self-loops (red areas).

which is necessarily true when Eq. (S9) is satisfied. Then, the condition to open up a range of H in between the
saturating states’ stability ranges can be written as:

H−
2 (++) > H+

2 (−−) ⇔ c21 < 0, (S11)

imposing the sign of c21. Finally, we consider the states (+−) and (−+). Let us start with the first one. Given
H+(+−) = H−(++), the opening of a gap inside [H+(−−), H−(++)] requires H−(+−) > H+(−−). This condition
translates into:

H+
2 (−−) < H−

1 (+−) ⇔ ∆c > ∆hc, (S12)

which is equivalent to Eq. (S9) characterizing the reversal of the critical hysteron in state (−−). The last condition
to open a gap is that there is a finite range of H in between H+(−+) and H−(+−):

H−(+−) > H+(−+) ⇔ c12 > 0, (S13)

imposing the sign of c12. Altogether, the necessary and sufficient conditions for the emergence of a self-loop of size
L = 4 in a system of N = 2 coupled spins can be written as:

∆c > ∆hc,

c12c21 < 0.
(S14)

These two conditions lead to the self-loop of size L = 4 represented in Fig. S7-b. The second scenario mentioned
above leads to the following conditions:
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∆c < −∆hc,

c12c21 < 0,
(S15)

which lead to the self-loop of size L = 4 with the opposite "chirality", as shown in Fig. S7-c. In conclusion, couplings
of opposite signs (strong asymmetry) and large enough asymmetry |∆c| = |c12 − c21| lead to a gap in between the
saturating states (Fig. S7-d). Inside this gap, no stable state exists, which guarantees the existence of a self-loop of
size L = 4. This is best illustrated by representing the states’ stability ranges in the case of completely asymmetric
interactions, i.e. c12 = −c21 = c, where ∆c = 2c (Figs. S7-b and c). We find that a hole of size |∆c| − |∆hc| opens in
between the saturating states as soon as |∆c| > |∆hc|.

8.2. N = 2 coupled hysterons

The conditions above can be extended to the case of hysterons with finite microscopic hysteresis:

|∆c| > |∆hc + σ|,
c12c21 < 0,

|c12| > σ/2,

|c21| > σ/2,

(S16)

where we have considered that the two hysterons have the same microscopic hysteresis, i.e. σ1 = σ2 = σ. Expectedly,
for larger microscopic hysteresis σ > 0, some self-loops that would have been possible for binary spins are forbidden.
More precisely, self-loops emerge for larger asymmetry, i.e. |∆c| > |∆hc + σ|, and large enough couplings, i.e.
|c12| > σ/2 and |c21| > σ/2. Note that, similarly as for spins, self-loops emerge only when the coupling coefficients
have opposite signs, i.e. c12c21 < 0 (strong asymmetry).

Sampling 105 different instances for different σ and fixed ∆hc = 1, we represent the parameters leading to self-loops
in the (c12,c21)-plane (Figs. S8). In the limit of binary spins (σ = 0), we recover the necessary and sufficient conditions
for self-loops to emerge, i.e. c12c21 < 0 and |∆c| > |∆hc| (Fig. S8-a). For σ > 0, numerical results are consistent with
the conditions given by Eqs. (S16) (Figs. S8-b and c). We find similar results when the two hysterons’ spans are
different (not shown here). Altogether, at the level of N = 2 interacting elements, the microscopic hysteresis tends
to prevent L = 4 self-loops that would have been possible otherwise, but in all cases strong asymmetry is a necessary
condition for self-loops to emerge.

8.3. Large systems

The sufficient and necessary conditions for L = 4 self-loops to emerge in systems of N = 2 spins can be extended into
necessary conditions for arbitrary N . Starting with spins and noting that each L=4 self-loop only involves two spins
(k and l), we find that such L=4 loop can only occur when cklclk < 0 and |∆ckl/∆h̃c

kl| > 1, where ∆ckl = ckl − clk
and where

2

(a)

2 + 2σ

(b)

σ

σ

(c)

Spins (σ = 0) σ
Hysterons (σ > 0)

FIG. S8: Sampling self-loops for N = 2 interacting elements. Self-loops of size 4 for arbitrary interactions in the
(c12,c21)-plane (red transparent markers); (a) spins, i.e. σ = 0; (b-c) hysterons, for σ = 0.5 (b) and σ = 2 (c).
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h̃c
i = hc

i −
∑
j ̸=k,l

cijsj . (S17)

Hence, for arbitrary N , the effect of the N − 2 spins that do not flip is to effectively rescale the difference between
the switching fields of the two flipping spins. Therefore, the same as for N = 2, self-loops of size L = 4 only emerge
for strong asymmetry (cklclk < 0) and large enough asymmetry |∆ckl|. However, in contrast with N = 2, when a pair
of spins satisfies the conditions above, it does not imply that the system necessarily reaches this cycle, as it might be
disconnected from the stable states.

We confirm the results above by sampling 105 systems with N = 1024 elements, and looking for self-loops at any
H. We plot a red marker in the rescaled (c12,c21)-plane when we find a L = 4 self-loop, where 1 and 2 now represent
the two flipping elements. We focus on the large coupling limit (NJ0 = 10), for collections of spins (Fig. S9-a) and
hysterons (Fig. S9-b).

We first focus on the case of spins. When self-loops occur, we find they are necessary included in the region of the
rescaled (c12,c21)-plane where L = 4 self-loops occur for N = 2 spins. However, for some systems there exist pairs of
spins which are in the red region (for a given configuration of the rest of the system), but which are never involved
in a L = 4 self-loop. The situation is very similar for hysterons with distributed spans: we find self-loops in the same
region as for spins, though there are fewer self-loops, especially close to the boundaries.

−4 −2 0 2 4

c21/∆h̃
c
12

−4

−2

0

2

4

c 1
2
/∆

h̃
c 1
2

−4 −2 0 2 4

c21/∆h̃
c
12

−4

−2

0

2

4

c 1
2
/∆

h̃
c 1
2

(a) (b)

FIG. S9: Self-loops of size 4 in large systems. L = 4 Self-loops for arbitrary interactions in the (c12 − c21) plane (red
transparent markers); in the limit of binary spins (a), i.e. σi = 0, and for hysterons (b), i.e. with σi flatly sampled from [0, 0.5];
fixed N = 1024, and NJ0 = 10.

8.4. Preventing L = 4 self-loops

We note that the condition to prevent L = 4 self-loops consists of a simple and a complex part, and we refer to the
simple part - cijcji > 0 for all pairs (i, j) - as the condition of weak asymmetry. This simple condition is sufficient to
guarantee the absence of L=4 self-loops for any system size, although, as there are other parts in hysteron parameter
space where such self-loops are prohibited - it is overly restrictive.

9: Strictly self-loop free ensembles

In this section, we discuss the different classes of strictly well-behaved ensembles.

9.1. Symmetric interactions

Symmetric interactions are reminiscent of dilute interacting soft spots, as discussed in [5]. Soft spots correspond
to local rearrangements associated with quadrupolar Eshelby-like displacement fields (Fig. S10-a). In this context,
the binary elements are modeled as having the same sizes, which implies cij = cji, and the sign of the interaction
coefficient is given by their relative orientations. When compatible lobes of the fields face each other, the interaction
is rather ferromagnetic (cij > 0), while it is rather antiferromagnetic (cij < 0) when incompatible lobes face each
other.
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∝
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cij = cji

FIG. S10: Realizations of the different interaction classes. (a) Symmetric interactions: two interacting soft spots, asso-
ciated with quadrupolar displacement fields, interact symmetrically: blue arrows: inward displacements; red arrows: outward
displacements. In this example, the orientations of the quadrupoles are such that cij = cji < 0 due to the incompatibility of the
quadrupolar fields. (b) Constant-columns interactions: linear chain of mechanical hysterons. (c) Ferromagnetic interactions:
parallel arrangement of mechanical hysterons in series with a spring of stiffness k and zero-rest-length. (d) Force-displacement
curve for a single mechanical hysteron.

9.2. Constant-columns interactions

Constant-columns interactions occur in a linear chain of bistable springs (Fig. S10-b), if we assume that the
force-displacement curve of such a mechanical hysteron is given by a bilinear relation:

fi = ui − disi, (S1)

with fi the force, ui the displacement, di the force discontinuity and si the state (Fig. S10-d). This system can be
mapped on the pairwise interacting hysteron model, where cij = −dj with dj > 0, where H = U =

∑
i ui is the total

displacement [12].

9.3. Ferromagnetic interactions

Ferromagnetic interactions occur, for example, in a parallel arrangement of mechanical hysterons in series with a
spring of stiffness k [26] (Fig. S10-d). The mapping then is cij = dj/k with dj > 0, where H = U is the total
displacement [26]. Note that a collection of hysterons arranged in parallel as represented in Fig. S10-c interact
ferromagnetically, and the interaction matrix has a constant-columns structure.

9.4. Constant-rows interactions

The case of constant-rows interactions is relatively artificial as it corresponds to a case where hysterons are affected
by the flipping of any other hysteron in exactly the same way. We do not know if this interaction matrix can be
derived from mechanical equilibrium of mechanical hysterons.

10: Role of the race condition rules

In this section, we analyze the impact of different race condition rules on the probability of finding self-loops and
on the self-loop size distribution. We explore four different dynamical rules. Rule 0 considers the model ill-defined
whenever race conditions occur [12, 21] (discarding the associated instance), and prevents sampling large systems
(see section 2). Rule 1 (focus of the main text) and 1′ specify to flip only the most and the least unstable element,
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respectively. Finally, under rule 2, all unstable elements are flipped simultaneously. Table SI summarizes the ill-defined
conditions encountered in each interaction ensemble for the different race condition rules.

Interaction ensemble rule 0 rule 1 rule 1′ rule 2

Arbitrary RC/G/SL G/SL G/SL G/SL†

Symmetric RC – – SL∗

Constant-columns RC – – SL∗

Constant-rows RC – – SL∗

Ferromagnetic RC – – –

∗ L = 2 self-loops only. † All L ≥ 2 self-loops allowed.

Table SI: Summary of the occurrence of ill-defined conditions for various interaction ensembles and race condition rules: RC:
race conditions; G: gaps; SL: self-loops.

10.1. Arbitrarily-coupled hysterons

Here, we examine different race condition rules for hysterons with random asymmetric interactions. First, in the
case where all unstable hysterons flip simultaneously (rule 2), we find that all self-loop sizes are allowed starting from
L = 2 (Fig. S11-h). In contrast, all race conditions rules which involve flipping elements one by one (rules 0, 1, and
1′) lead to self-loops whose sizes are always even, starting from L = 4 (Figs. S11-e to g). This parity is expected
given all the hysterons involved in a self-loop must first flip and then unflip to revisit a state.

Let us first show that self-loops of size L = 2 are forbidden when hysterons flip one-by-one, because they correspond
to loops involving a single hysterons with negative span. Let us consider that state S is unstable at a given value
of the drive H because hysteron i is unstable, e.g. H > H+

i (S) (without loss of generality). The system enters a
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FIG. S11: Self-loop statistics for arbitrarily-coupled hysterons and different race condition rules. (a-d) Probability
Psl of at least one self-loops occurring for any H as a function of NJ0, for different N ∈ [2, 3, . . . , 10], color-coded from light
to dark red as N increases; the black dashed lines represent the slope 3; (inset) probability to be self-loop free 1 − Psl as a
function of N in the large coupling limit (NJ0 = 102). (e-h) Self-loops size distributions for fixed NJ0 = 20 and N = 8. (a/e)
Rule 0; (b/f) rule 1; (c/g) rule 1′; (d/h) rule 2.
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FIG. S12: Self-loop statistics for well-behaved models of coupled hysterons, where race conditions are resolved with
rule 2. Statistical measures for self-loops scale when plotted as function of NJ0 and dominate for NJ0 ≫ 1 (105 samples; color
from light to dark as N increases from 2 to 10). Probability Psl of finding at least one self-loop for any value of H (dashed line
indicates slope 4). Inset: The probability to be self-loop free, 1− Psl, decays to zero with N for large couplings (NJ0 = 102).
(a) Symmetric interactions; (b) constant-columns interactions; (c) constant-rows interactions.

self-loop of size 2 if hysteron i remains unstable after the snap, i.e. H < H−
i (S), which yields:

h−
i −

∑
j ̸=i

cijsj > h+
i −

∑
j ̸=i

cijsj . (S1)

All hysterons j ̸= i being unchanged, Eq. (S1) implies h−
i > h+

i , which corresponds to hysteron i having a negative
span, i.e. σi < 0, which is forbidden (excluded from our sampling).

Interestingly, for all race condition rules, the probability Psl of finding at least one self-loop increases as a power law
for NJ0 ≪ 1, and saturates toward a constant value with J0 for NJ0 ≫ 1 (Figs. S11-a to d). Similar dependencies
have been observed for other properties of interacting hysterons [4, 21, 30]. Except for rule 0, the large-J0 plateau
value increases monotonically with N , and in all cases the data suggest that Psl → 1 when N increases. Moreover, in
all cases, the size of self-loops seems to be exponentially distributed, modulo the specific constraints on the self-loop
sizes discussed above.

10.2. Well-behaved ensembles

Here, we focus on the well-behaved models introduced in the main text, namely symmetric, constant-columns,
constant-rows, and ferromagnetic interactions. We have shown that self-loops are forbidden for all these classes when
hysterons flip one by one (rules 0, 1 and 1′). Here, we analyze the probability of finding self-loops and the self-loop
size distributions when race conditions are resolved with rule 2.

Let us first focus on symmetric, constant-columns, and constant-rows interactions. We find that all self-loops
have size L = 2, independently of the model (not shown here). The presence of 2-cycles is a well-known feature
for symmetrically-coupled spins where all unstable spins flip simultaneously [33, 34, 37], which is generally called
synchronous or parallel update in the context of spin glasses and neural networks. Second, the probability Psl of
finding at least one L = 2 self-loop for any H increases as a power law for NJ0 ≪ 1, and saturates toward a constant
value with J0 for NJ0 ≫ 1 (Figs. S12), which asymptotes to 1 as N increases (Figs. S12-insets)

Finally, for purely ferromagnetic interactions, we find no self-loops when race conditions are resolved with rule 2,
which suggests that the 2-cycles emerging with rule 2 are more related to the presence of antiferromagnetic interactions
than to non-symmetric ones, which is very different than in the case where hysterons flip one by one.

11: The combinatorics and structure of self-loops

We examine the proliferation of self-loops using a suite of combinatorial and numerical tools we recently developed
for studying transition graphs in hysteron models [31]. Transition graphs have emerged as a powerful framework for
capturing and studying sequential responses [3, 18, 21, 31]. In these, states S are represented by nodes, and their
transitions under zero-temperature, quasistatic driving with a global field H, form directed edges (Fig. 1-c of the
main text, and Figs. S16). The range of stability of state S is given by its upper and lower switching fields H±(S)
(which follow from the extrema of H±

i (S), see main text), and an up or down transition is initiated when H > H+(S)
or H < H−(S). Here, we use this framework to represent the structure of self-loops, focusing on the repeating cycle
of their unstable states.
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FIG. S13: Relabeling symmetry. Each self-loop is defined by the sequence of flips and the starting state S0. Two self-loops
are equivalent if one can be obtained from the other by a relabeling of the hysterons.

11.1. Structure of self-loops

Here we discuss how to count the number of fundamental self-loop structures of size L and involving ne elements,
M(ne, L), irrespective of whether they are realizable in a certain interaction ensemble. We first determine all potential
self-loops using a naive procedure based on the combinatorics of flip sequences, which generates cycles of length L
on a (ne)-hypercube. However, many of these are related under two trivial symmetries—relabeling and timeshifting
(see below)—and in the second step we determine the fundamental self-loops, i.e., those that can not be mapped onto
each other by trivial symmetries.

To illustrate this, consider M(3, 6). A naive count works as follows: there are 24 self-loops of length L = 6 starting
from, e.g., state S = (−1− 1− 1), yielding a total of 23 × 24 = 192 potential self-loops. To find the fundamental self-
loops, we discuss two symmetries on their structure, i.e., sequence of states. First, we consider self-loops equivalent if
they can be mapped onto each other by relabeling of the hysterons, which reduces the number of loops by a factor ne!
(Fig. S13). Note, however, that each of these corresponds to a separate polytopes in parameter space. Second, since
any state in a self-loop can be taken as the starting state, we consider self-loops equivalent if they can be mapped
on each other by a ’timeshift’ (Fig. S14-S15). We note that all loops related by shifts lead to the same polytope in
parameter space. For the example of ne = 3, L = 6, the relabeling symmetry reduces the 192 potential self-loops to
32, and the timeshift symmetry lowers it further to six distinct fundamental self-loops (Fig. S16).

We now describe our algorithm for calculating M(ne, L). We specify each self-loop by its starting state S0 and the
sequence of element flips (Fig. S13). The relabeling symmetry implies that the sequence of flips (2, 1, 0, 2, 0, 1) from
state S0 = (+1− 1− 1) gives rise to the same self-loop as the sequence (1, 0, 2, 1, 2, 0) from state S0 = (−1− 1 + 1).
We break this permutation symmetry by indexing hysterons according to the order in which they are flipped, and
only keeping loops where the different hysteron flips occur in descending order, such as (2, 1, 0, . . . ) and (2, 1, 2, 0, . . . ).
Using this convention, we only keep the first sequence (2, 1, 0, 2, 0, 1), and overall this convention reduces the number
of generated self-loops by a factor ne!.

Second, we deal with the timeshift symmetry. For example, the sequence (2, 1, 0, 2, 0, 1) from state (+1− 1− 1) can
also be ’shifted’ by one, such that we obtain the sequence (1, 0, 2, 0, 1, 2) starting from state (+1 − 1 + 1); with the
relabeling convention described above, these cycle maps to (2, 1, 0, 1, 2, 0) starting from state (+1+ 1− 1) (Fig. S14).
For computational efficiency, we break up the check for timeshift symmetry in two parts.

First, when generating self-loops, we order these by their minimum magnetization m :=
∑

i si:

M(ne, L) =

ne∑
m=−ne

Mm(ne, L) (S1)

where Mm(ne, L) is the number of self-loops which starts and ends at the same magnetisation m, and does not go

m = −1

m = +1 m = +1
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−+−+−−
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−+−+−−

+++

+−+ −++++−

−+− −−+

time shift convention
labeling

(2, 1, 0, 2, 0, 1)

S0 = (+1,−1,−1)

(1, 0, 2, 0, 1, 2)

S0 = (+1,−1,+1)

(2, 1, 0, 1, 2, 0)

S0 = (+1,+1,−1)

FIG. S14: Time shift symmetry between two self-loops. Each self-loop is defined by the sequence of flips and the starting
state S0. Two self-loops are the same if one can be obtained from the other by arbitrarily shifting the starting state. This
ambiguity on the starting state is partially lifted by decomposing self-loops by the magnetization m of their starting state, and
imposing the magnetization cannot go below m.
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FIG. S15: Time shift symmetry between two self-loops. To remove the final ambiguity on the starting state when there
exist multiple possible starting states with the same magnetization, we compare the ranking of self-loops (see text), and pick
the loop with the smallest ranking.

below m. Hence, we first generate all loops starting at state (−1,−1,−1, . . . ) with magnetization m = −ne; then we
start at states with magnetization m = −ne +2, but whenever such potential loop reaches a lower magnetization, we
dismiss it. This approach filters out loops such as (2, 1, 0, 1, 2, 0) starting from state (+1 + 1 − 1). Iterating over all
magnetizations is computationally effective, e.g., for ne = 3, L = 6, this procedure reduces the number of potential
self-loops from 32 to 7.

The labeling and magnetization conventions limit the number of self-loop structures, but do not fully eliminate
all duplicates. For our example, both loops (2, 1, 0, 2, 0, 1) from state (+1 − 1 − 1) and (2, 1, 0, 1, 2, 0) from state
(−1 + 1− 1) would be included, even though there are related by shifting and relabeling (Fig. S15). To select which
of these to keep, we assign to each of these loops a ranking composed of the initial state and the sequence of flipped
hysterons: in the above example these rankings would be 100210102 and 010210120 (where we replaced all the phases
−1 by 0 for notational convenience). For equivalent loops, we only include the loop with the lowest ranking. This
allows us to identify one more pair of duplicates for ne = 3, L = 6 – namely, the two loops described above – bringing
the final number of (ne = 3, L = 6) fundamental self-loops down to 6, as shown in the main text.

We implement this procedure using a suite of numerical tools developed earlier [31], and summarize the results in
Table SII and Fig. S16. Our results show a rapid proliferation of the number of fundamental self-loops when L and
ne increase.
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FIG. S16: Ensembles of fundamental self-loops of different sizes. Blue(/red) arrows represent up(/down) transitions.
(a) Size L = 4 (1 self-loop). (b) Size L = 6 (6 self-loops). (c) Size L = 8 (58 self-loops, not all shown).
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ne = 2 ne = 3 ne = 4 ne = 5

L = 4 1 – – –

L = 6 – 6 – –

L = 8 – 2 56 –

L = 10 – – 176 796

L = 12 – – 420 9028

L = 14 – – 448 76640

L = 16 – – 112 535584

L = 18 – – – x

L = 20 – – – x

L = 22 – – – x

L = 24 – – – x

L = 26 – – – x

L = 28 – – – x

L = 30 – – – x

L = 32 – – – 15109096

Table SII: Number fundamental self-loop structures which can be drawn. The left column (resp. top row) indicates
the size L of self-loops (resp. the number of hysterons involved in the loop ne); the number inside each box is the number of
different self-loop structures that can be drawn (not all of them are realizable with pairwise interactions).

ne = 2 ne = 3 ne = 4 ne = 5

L = 4 1 – – –

L = 6 – 6 – –

L = 8 – 0 56 –

L = 10 – – 114 796

L = 12 – – 145 x

L = 14 – – 48 x

L = 16 – – 4 x

L = 18 – – – x

L = 20 – – – x

L = 22 – – – x

L = 24 – – – x

L = 26 – – – x

L = 28 – – – x

L = 30 – – – x

L = 32 – – – x

ne = 2 ne = 3 ne = 4 ne = 5

L = 4 0 – – –

L = 6 – 2 – –

L = 8 – 0 24 –

L = 10 – – 4 376

L = 12 – – 1 x

L = 14 – – 0 x

L = 16 – – 0 x

L = 18 – – – x

L = 20 – – – x

L = 22 – – – x

L = 24 – – – x

L = 26 – – – x

L = 28 – – – x

L = 30 – – – x

L = 32 – – – x

Table SIII: Number of fundamental self-loop structures which are realizable. The left column (resp. top row) indicates
the size L of self-loops (resp. the number of hysterons involved in the loop ne); the number inside each box is the number of
different self-loop structures which are realizable (left), and which are realizable when restricting to weak asymmetry (right).
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11.2. Realizability of self-loops

Now that we have established the structure of the fundamental self-loops as a function of (ne, L), we determine their
realizability. For every fundamental self-loop we can construct a set of linear inequalities of the hysteron parameters
(h±

i , cij) using linear programming [21, 30]. We adapt the methods introduced in [31] to deal with self-loops and race
conditions, and eliminate the role of the value of the driving parameter.

The framework in [31] did not explicitly discuss parameter conditions to realize self-loops, but instead focused on
non-loop transitions, for which separate design inequalities for the initial, intermediate and final state of an avalanche
were derived. As self-loops have no final state, it suffices to construct the initial and intermediate inequalities.
Moreover, we are not interested in whether a self-loop arises for a specific value of the driving H, but only whether a
self-loop is realizable for any driving. We account for this by eliminating the driving from the set of linear inequalities.
For example, if we have the set of design inequalities:

H > H+(S0),

H < H−(S1),

H > H+(S2),

H < H−(S3),

H > H+(S4),

H < H−(S5),

(S2)

which realizes a self-loop of length L = 6 and driving H, we can eliminate the driving H to obtain inequalities that
enforce that there is a range of the driving H where a self-loop occurs:

H−(S1) > H+(S0),

H−(S1) > H+(S2),

H−(S1) > H+(S4),

H−(S3) > H+(S0),

H−(S3) > H+(S2),

H−(S3) > H+(S4),

H−(S5) > H+(S0),

H−(S5) > H+(S2),

H−(S5) > H+(S4).

(S3)

While previously, we considered transitions with race conditions ill-defined in [31], we can easily implement our
resolution of the race conditions by flipping the most unstable hysteron. We note that as a consequence we do not
need to keep track of all switching fields H±

i (S), but only of the state switching fields H±(S).

We finally note subtlety for states that are ’unconditionally unstable’ – i.e., for which H−(S) > H+(S). While
these states pose no issue if H < H+(S) or H > H−(S), the range H+(S) < H < H−(S) is problematic, as in this
case one cannot judge whether a hysteron flips up or down from the ordering of the switching fields alone. As a proper
accounting for these cases would significantly increase the complexity of the inequalities, we choose to take a more
conservative approach, where a self-loop is counted as non-realizable if it is contingent upon this exceptional case.

The results of our realizability checks for the general case and weakly asymmetric case are shown in Tables SIII.

12: Response for strictly self-loop-free ensembles

The absence of self-loops in the different well-behaved models allows to explore statistics of avalanches and of the
response to cyclic drive for large N and arbitrary J0. We focus below on race condition rule 1, where the most
unstable element flips first, and on ensembles of hysterons with distributed spans (σi flatly sampled from [0, 0.5]).
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12.1. Avalanche sizes

We consider N = 1024 hysterons and place ourselves at H = 0. Starting from a random initial state, the system
is stabilized by flipping unstable hysterons one by one until a stable state S0 is found (which is guaranteed in the
absence of self-loops). We simulate S0 → S1 over 5× 103 samples, and record the avalanche sizes A – the number of
flips before the system settles in a stable state. For all ensembles, when NJ0 ≪ 1, only Preisach-like non-avalanche
transitions (A = 1) are found. For symmetric interactions, the larger J0, the broader the avalanche size distribution
and the larger the mean avalanche size, with a crossover around NJ0 ≃ 1 (Figs. S17-a and d). For NJ0 ≫ 1,
avalanche sizes are power-law distributed with a cutoff growing with J0 and N , and saturating below system size.
For constant-columns interactions, we find a similar transition scenario at NJ0 ≃ 1 (Figs. S17-b and e). However, for
J0 ≃ 1, the mean avalanche size reaches a maximum, which increases with system size (Fig. S17-e, inset), and then
decreases abruptly, and increases again for larger J0. Finally, for constant-rows interactions, numerical simulations
confirm that transitions can only be Preisach-like nonavalanche transitions or avalanches of size 2 that do not alter
the magnetization m =

∑
i si (Figs. S17-c and f), with a crossover between the two around NJ0 ≃ 1.

12.2. Response to cyclic drive

Let us now consider cyclic drive conditions - when the input U is swept between Umin and Umax. We focus on
two aspects of the response: the number of driving cycles τ taken to reach a periodic orbit, and the period T of the
orbit relative to the driving cycle. In the Preisach model (limit of zero interactions), τ ≤ 1 and T = 1, which can be
understood by noting that each (independent) hysteron requires at most one cycle before it reaches a periodic orbit.
Only a few results exist for finite interactions between hysterons. For small systems, it was shown that the transients
τ and periodicity T are distributed exponentially [4].

Here, we consider N = 512 hysterons and place ourselves at U = 0. Starting from a random initial condition,
the system is stabilized by flipping unstable hysterons one by one until a stable state is found. Finally, the drive
U is swept between 0 and Umax, where Umax is the drive amplitude leading to a magnetization m =

∑
i si equal or

larger than N/2 (Umax is determined during the first drive cycle and is kept fixed for the rest of the simulation).
For the symmetrically-coupled case (Figs. S18-a and d), when NJ0 ≪ 1, both ⟨τ⟩ and ⟨T ⟩ are equal to 1, and
when NJ0 ≫ 1, both ⟨τ⟩ and ⟨T ⟩ are greater than 1 and constant with J0. Remarkably, both ⟨τ⟩ and ⟨T ⟩ reach a
maximum for intermediate J0 ≃ 1/N [21]. For constant-columns and constant-rows interactions, we systematically
find T = 1 (Figs. S18-b and c): all orbits have the same period as the drive. This is expected for constant-columns
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FIG. S17: Large avalanches for well-behaved models. (a-c) Avalanche size distributions for different J0 ∈
[
10−2, 102

]
;

color-coded from light to dark blue as J0 increases; fixed N = 1024. (d-f) Mean avalanche size ⟨A⟩ as a function of NJ0, for
different N ∈ [16, 32, 64, 128, 256, 512], color-coded from light to dark red as N increases. (a/d) Symmetric interactions; (b/e)
constant-columns interactions; (c/f) constant-rows interactions.
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FIG. S18: Transients and periodicity during cyclic drive for the well-behaved models, for different N ∈
[16, 32, 64, 128, 256, 512], color coded from light to dark red as N increases. (a-c) Ensemble averaged transient length ⟨τ⟩
as a function of J0. (d-f) Ensemble averaged periodicity ⟨T ⟩ as a function of J0. (a/d) Symmetric interactions; (b/e) constant-
columns interactions; (c-f) constant-rows interactions.

interactions given the absence of scrambling [12]. Also, ⟨τ⟩ = 1 for both NJ0 ≪ 1 and NJ0 ≫ 1 (Figs. S18-e and
f). For constant-columns interactions, ⟨τ⟩ reaches a maximum for intermediate J0 at the same value corresponding
to the maximum of ⟨A⟩, i.e. J0 ≃ 1. In contrast, for constant-rows interactions, the maximum of ⟨τ⟩ is reached for
J0 ≃ 1/N .
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