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Dynamic Self-Loops in Networks of Passive and Active Binary Elements
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Models of coupled binary elements capture memory effects in complex dissipative materials, such as
transient responses or sequential computing, when their interactions are chosen appropriately. However, for

random interactions, self-loops—cyclic transition sequences incompatible with dissipative dynamics—
dominate the response and undermine statistical approaches. Here we reveal that self-loops originate from
energy injection and limit cycles in the underlying physical system. We, furthermore, introduce interaction

ensembles that strongly suppress or completely eliminate self-loops, allowing statistical studies of memory
in large dissipative systems. Our Letter opens a route toward a unified description of passive and active

multistable materials using hysteron models.
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Sequences of transitions between metastable states gov-
ern the hysteresis [1], memory [2-9], emergent computing
[10-12], sequential shape morphing [13,14], and adaptive
behavior [15,16] of driven dissipative materials, such as
crumpled sheets, disordered media, and metamaterials [9]
[Fig. 1(a)]. As these states are often composed of local, two-
state elements, with or without hysteresis, the response is
commonly described by models of interacting hysterons or
binary spins at zero temperature [Fig. 1(b)]. While models
without interactions are well understood [1,17-19], inter-
actions are crucial for capturing complex responses such as
avalanches, transient responses, and multiperiodic cycles
[5,20]. Pairwise interactions are captured by a matrix c;;
which represents how element i’s flipping thresholds are
influenced by element j [Fig. 1(c)]. In some cases, ¢;; can
be measured [7,10], and for networks of physical bistable
elements, it can be modeled [12,21-25]. Hysteron models
with appropriate interactions then enable accurate predic-
tions of the systems response and memory effects
[5,8,10,12,25-27].

Yet, the precise interactions are often unknown, or the
goal is to understand system classes rather than a single
experiment. Strikingly, assigning random interaction coef-
ficients [4,5,20,30-32] overwhelmingly produces self-
loops [Fig. 1(d)]: avalanches that get trapped in a repeating
sequence of states that never settle [20,33-36]. Such
dynamic loops—prohibited in dissipative systems—can
be avoided by using symmetric interactions (c;; = ¢;;),
as commonly done in spin glasses where asymmetry
implies energy input and oscillations [33-42]. However,
for hysteretic binary elements, whose strong nonlinearity
invalidates Maxwell-Betti reciprocity [43], asymmetric
interactions are compatible with dissipation. For example,
a small ridge i may weakly affect a larger one j but not vice
versa: |c;;| < |c;;| [Fig. 1(c)]. Such asymmetric interactions
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are experimentally observed and theoretically modeled
[10,12,25] and are crucial for explaining memory effects
[5,32]. A conundrum thus arises: though physical and
essential, random asymmetric interactions yield unphysical
self-loops.

Here we uncover the mechanism that generates self-
loops and show that their probability approaches 1 in large
systems of asymmetrically coupled hysterons. We discuss
physical networks with active bistable elements, map them
to interacting hysterons, and show that these produce
self-loops linked to limit cycles in the networks: rather
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FIG. 1. (a) Crumpled sheet with bistable elements (ridges i and ;)

[7]. (b) Abstract hysteron models employ interacting binary
elements. (c) Variations in strength of physical elements map to
asymmetric hysteron interactions (|c;;| > |c;]). (d) Self-loop in a
(partial) transition graph. When the switching thresholds satisfy
H(S") < H*(S%), H(S?) > H"(S5°), and H (%) > H*(S?)
and the system is in state S°, increasing the driving H above its
threshold H*(S°) triggers a self-loop, as all states are unstable [28].
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than being unphysical, self-loops reveal that coupled hys-
teron models span passive and active physical systems.
Surprisingly, active elements may give rise to symmetric
hysteron interactions. Finally, we introduce weakly asym-
metric interaction ensembles to suppress self-loops, develop
strict ensembles to eliminate them, and use these to study
avalanche statistics and cyclic response in large hysteron
systems. Our Letter uncovers subtle relations between the
symmetry of hysteron interactions, self-loops, and physical
energy injection. Moreover, it shows that hysteron models
unify the description of passive and active multistable
materials, connects the self-loop sector to limit cycles in
active systems, and enables statistical studies of memory
effects and pathways in dissipative and mixed systems.

Model—We consider N binary elements, s; = £1, which
form collective states S = (s, s, ...). The system is driven
by a global field H, and the stability range of each element i
in state S is given by switching thresholds H:(S). For
pairwise interactions,

HE(S) = hf =Y cys;, (1)

where hi" are the bare switching thresholds of element i. To
model spins, we take h;L = h;, whereas for hysterons,
hi+ > h; [1,18,19]. The matrix Cijs with ¢; = 0, encodes
cooperative (c;; > 0) or frustrated (c;; < 0) interactions
that may be asymmetric (c;; # c¢j;) [5,12,25,27].

In this model, each state S has a range of stability, encoded
in state switching thresholds H*(S) that follow from the
extrema of HF(S): H'(S) := min;-[H; (S)] and H=(S) :=
max;+ [H; (S)], where i* are the indices where s; = +1.
When the system is in state S° and H is increased above
H"(8°) or decreased below H~(S9), state S° loses stability
and its unstable hysteron flips. Depending on 7,,, the number
of unstable hysterons in the resulting state S', three different
scenarios arise [20,31]. When n, = 0, state S' is stable;
when n,, = 1, state S! is unstable and its unstable hysteron
flips; when n, > 1, multiple hysterons are unstable. The
latter case, which is abundant in large systems [28], leads to a
race condition and requires a dynamical rule to specify the
next step in the transition [10,12,20,27,31]. In the remainder,
we flip the most unstable element first [5]; this rule is
physically plausible and corresponds to the zero-temperature
limit of the Glauber dynamics [44,45] [for other rules see
Supplemental Material [28] ].

Hysterons with symmetric interactions—Although hys-
teron interactions are not expected to be symmetric,
numerical sampling reveals that symmetric interactions
consistently avoid self-loops. This can be proven by
showing that the quantity V(S), written as

V() ==Y [s,-(H - h¥) +%Zcijsisj:|v (2)

i J#i

is a Lyapunov-like function of the system, which guaran-
tees that the latter always converges toward a stable state
and thus prohibits self-loops (Appendix A).

Random asymmetric coupling: Gaps and self-loops—We
now exploit random interactions, where c;; and cj; are
sampled independently. For any value of H, each isolated
element has one stable phase or two within the hysteretic
range. Without interactions, stable states can thus be easily
formed by combining stable elements. However, inter-
actions make the switching thresholds dependent on the
collective state, effectively randomizing stability ranges
and creating gaps, ranges of H where no state is stable.

We find two related scenarios where interactions lead to
self-loops. The length of a self-loop, i.e., the number of
unstable states visited within the cycle, is denoted L. We
consider state S going unstable by the driving crossing a
critical value H¢. In the first scenario, H¢ lies at the edge of
a gap, and the system gets inevitably trapped in a self-loop
as there are no stable states. In the second, a set of L distinct
unstable states transition toward each other, forming a
periodic attractor, and the system gets trapped, despite the
presence of other stable states at H = H®.

To investigate the statistics of gaps, self-loops, and the
self-loop size distribution [28], we sample the model using
an event-driven algorithm [5]. We consider collections of
hysterons with thresholds in a compact range [5,8,32]: we
flatly sample the midpoints of the bare switching thresholds
h¢ = (hf + h;)/2 from the interval [—1,1] and the inter-
action coefficients c;; from [—-J, Jo]. Unless noted other-
wise, we flatly sample the spans o; = hi” — h; > 0 from
[0, 0.5].

We find that the probability Pg of a gap, meaning the
absence of a stable state at H = 0, and the fraction of gaps
f both increase as power laws when NJ, < 1 [Figs. 2(a)
and 2(b)]. For NJ, > 1, they saturate at significant values.
The probability that states have a finite stability range
decreases exponentially with N: for large N, stable states
become rare, prohibiting statistical studies of transi-
tions [28].

Gaps imply self-loops, but self-loops can also occur
outside of gaps. Therefore, the probability of a self-loop
occurring starting from a random state at H = 0, PY, is
larger than the corresponding gap probability P) [Fig. 2(c)
and Supplemental Material [28] ]. Similarly, we calculated
the total probability of observing a self-loop at any value of
H, Pg, by starting from every stable state, increasing and
decreasing H, and checking whether the ensuing transitions
yield at least one self-loop. We find that P approaches 1 in
large, strongly coupled systems [Fig. 2(d) and [28] ]. This
dominance of self-loops is robust; hysterons with fixed
spans ¢; = 0.5 and binary spins where ¢; = 0 also have
Py — 1 in the large coupling limit [28,33-36]. Hence, self-
loops, incompatible with the dissipative systems we aim to
model, are unavoidable for random interactions, and for
large systems completely overwhelm the response.
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FIG. 2. Statistical measures for gaps and self-loops scale when

plotted as function of N.J,, (10° samples; color from light to dark as
N increases from 2 to 10). (a) Probability P2 of finding a gap at
H = 0 (dashed line indicates slope 4). (b) Averaged fraction of gaps
fq, where f is defined as the ratio of the size of intervals where
no stable states exist divided by H (++...) —H" (- —...)
(dashed line indicates slope 4). (c) Probability Pg] of finding at
least one self-loop at H = 0 (dashed line indicates slope 4).
(d) Probability Py of finding at least one self-loop for any value
of H (dashed line indicates slope 3). Inset: the probability to be self-
loop-free, 1 — Py, decays to zero exponentially with N for large
couplings (NJ, = 10%).

Networks of active elements—To gain further insights
into the emergence of self-loops in physical systems, we
consider networks of bilinear, hysteretic springs,

filxi) = x; = djs;, AE; := 2di¢’?, (3)

where transitions occur at x; = x7, 6¥ == x;” — x7 is taken
positive, and AE; is the dissipated energy per hysteresis
loop [Figs. 3(a) and 3(b)]. Once the geometry of the
network and the parameters of all elements are specified,
the network can be mapped to an interacting hysteron
model [12,25]. This mapping never yields hysteron param-
eters that produce self-loops as long as the physical
elements dissipate energy, i.e., when d; > 0.

We find that networks that include active elements
(d; < 0), enabled by, e.g., force-generating components
activated when s; = 1 [Fig. 3(b)], are mapped to hysteron
models that can feature self-loops. For simplicity, we
consider a network of two serially coupled elements, where
the mapping yields ¢;; = —d; and 6; = 2(6? + d;) [12,25],
producing four distinct behaviors [Figs. 3(c) and 3(d)].
(1) When both elements are passive, the hysteron spans o;
are positive, the interaction coefficients are both negative,
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FIG. 3. Self-loops in networks containing active elements. (a),

(b) Force-displacement curves for a dissipative element with d; >
0 and AE; < 0 [(a), blue], and for an active element with d; < 0
and AE; > 0 [(b), red]. (c) Two serially coupled elements, with
total displacement U = x; + x,. (d) Four classes of behaviors for
two serially coupled elements as function of d; and d,; here
(x7,x7) = (-1,1), (x3,x3) = (0.2,0.4). (e) Serially coupling
one active element and a linear spring (representing one of the
elastic branches of the second element) can produce a gap without
stable states [U'(A) < U~(V)] if d, is strongly negative [28].
(f) Regions where self-loops emerge for two coupled hysterons;
for fixed 6, = 6, = 0 (green areas) and for (o, 5,) determined
for the physical system represented by the red dot in (d) (red
boundaries). The blue hatched regions in (d),(f) represent purely
dissipative systems. Orange lines in (d),(f) indicate active
elements that lead to symmetric hysteron interactions. (g) Two
L = 4 self-loops observed in (d),(f).

and no self-loops occur [12]. (ii) For strongly active
elements, i.e., d; < —a?, the hysteron spans o; become
negative [Fig. 3(e)]. Here we expect the physical system to
feature dynamic limit cycles [46-48], (partly) captured by
an extended hysteron model. (iii) Weakly active elements
map to hysterons with ¢; > 0 and interaction coefficients
not accessible with passive elements. Strikingly, active
elements with d; = d, < 0 map to hysteron models with
symmetric interactions [Figs. 3(d) and 3(f), orange line]:
there is no simple relation between the symmetry of ¢;; and
energy input. (iv) Crucially, for appropriately chosen
activity, the physical system maps to the hysteron model
with an L =4 self-loop. For details, see Supplemental
Material [28].

Hence, active elements extend the range of realizable
hysteron parameters, may produce negative hysteron spans,
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and allow one to access the hysteron sector with self-loops.
Similar mechanisms also arise in fully dynamic models
combining activity and bistability [49]. While larger, more
complex networks remain to be understood, our example
shows that self-loops can be physically interpreted as
arising from energy injection in networks of two-state
elements. The hysteron model features self-loops because it
encompasses both passive and active systems.

Proliferation of self-loops—We now return to the hys-
teron model and seek to understand the parameters for
which self-loops occur. Each self-loop is associated with
a set of linear inequalities and occurs in a polytope in
parameter space (hi, c;;) [5,20,31,32]. We first consider
L = 4 loops [Fig. 3(g)]. For two spins, we find that a gap
of size |Ac|—|Ah¢| opens up when cj,cy <0 and
|Ac| > |Ah¢|, where Ac := ¢, — ¢y and AhC = hS — hf.
These conditions are sufficient and necessary for the
emergence of a self-loop [Fig. 3(f)]. For two hysterons,
the range in parameter space where these self-loops can
occur shrinks [Fig. 3(f) and [28] ]. Finally, we can extend
these conditions to arbitrary N; as only two elements i and j
are involved for L = 4 self-loops, such short self-loops are
prohibited by requiring c;;c;; > 0 for all pairs (i, j) [28].

By identifying all potential self-loops with L < 2V, one
could, in principle, determine all corresponding polytopes;
the complement of their union is then free of self-loops.
We have investigated the number of distinct self-loops,
each corresponding to a different polytope in parameter
space, with L. While our approach allows an efficient
classification of the self-loop structures, we find that their
number grows extremely rapidly with N (Appendix E and
Supplemental Material [28]). This proliferation of the
number, length, and complexity of self-loops makes deriv-
ing explicit and sharp conditions that identify all self-loops
unfeasible. In the remainder, we first introduce a lenient
strategy that removes the shortest and suppresses longer
self-loops, followed by strict ensembles that fully eliminate
all self-loops but are overly restrictive.

Lenient strategy: Weak asymmetry—We introduce the
notion of weak asymmetry (WA): ¢;;c;; > 0 for all pairs
(i, ). Not only does WA eliminate L = 4 self-loops, but it
also suppresses the number of longer self-loops that are
realizable (Appendix E and [28]). Statistical sampling
reveals that WA is an effective strategy to suppress self-
loops. In particular, P% — 0 for large N, allowing one to
sample individual transitions, although P slowly grows
with N: the combinatorial possibilities of finding a self-
loop dominates in large systems [28]. Nevertheless, for
intermediate N, WA strongly suppresses self-loops, e.g.,
Py~ 14% for large couplings and N = 10. Hence, WA
strictly prohibits short self-loops and suppresses longer
self-loops.

Strict ensembles—We now present ensembles of asym-
metric interactions that strictly prohibit self-loops. First, if
all interactions are positive (c¢;; > 0), avalanches exhibit
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FIG. 4. Simulations of large systems of coupled hysterons in
the constant columns (left) and symmetric (right) ensembles
(N =16,32,...,512 for increasingly dark colors). (a),(b) En-
semble averaged avalanche size (A). To determine these, we
initialize the system at a stable state SO at H = 0, increase H, and
measure the number of flips before the system settles on a stable
state. (c),(d) Ensemble averaged transient (z), where 7 is the
number of cyclic drive cycles after which the system reaches a
periodic orbit [28].

monotonic evolution of the magnetization m := Xs;, thus
prohibiting self-loops (Appendix B). If all interactions
are negative, and either c;; = —d, (constant columns) or
cyi = —d, (constant rows), where d;, > 0, self-loops are
also prohibited. In the former case [which corresponds to
the hashed blue region in Fig. 3(d)], the interactions
prohibit scrambling [12], which, in turn, prohibits self-
loops (Appendix C); in the latter case, the interactions only
allow avalanches of length 2, too short to form a self-loop
when o; > 0 (Appendix D and Supplemental Material
[28]). We note that the statistics of, e.g., avalanches and
self-loops drastically depends on the dynamical rule in all
these ensembles. In particular, when race conditions are not
allowed [12,20,31], constant-column interactions restrict
the avalanche size A <2, whereas flipping the most (or
least) unstable elements leads to much larger A [Fig. 4(a)].
Moreover, flipping all unstable elements simultaneously
instead of only the most unstable one leads to a dominance
of L =2 self-loops for symmetric, constant-column, and
constant-row interactions [28].

The strictly self-loop-free ensembles allow us to study
the statistics of unprecedentedly large systems of interact-
ing hysterons, including the distributions of avalanche sizes
A, transient times 7, and multiperiodicities 7 of orbits under
cyclic drive (Fig. 4 and Supplemental Material [28]). We
find that these significantly depend on the ensemble, e.g.,

207402-4



PHYSICAL REVIEW LETTERS 135, 207402 (2025)

PASSIVE

ACTIVE

Multistable media
:
1
'
S
1
1
1
1
1
1
:
1
)
E
1
1
1
1
1

O T

Hysteron models

FIG. 5. Relations between active and passive multistable
physical systems, hysteron models, self-loops, and symmetry
of ¢;;. Both active and passive systems can map to hysteron
models with symmetric couplings (¢;; = cj;, blue region); in this
case, self-loops are forbidden. The region where self-loops occur
forms a complex cloud of polytopes in the space of hysteron
models (SL, green regions).

avalanches and transients are shorter in the constant
columns than in the symmetric ensemble, and their
dependence on NJ is qualitatively different.

Conclusion and outlook—The picture that emerges is that
hysteron models connect with both passive and active multi-
stable physical systems. We summarize the relations between
networks of bistable elements, the symmetry of hysteron
interactions, and self-loops in Fig. 5. Strikingly, symmetric
hysteron interactions can arise from networks of active or
passive bistable elements, but cannot feature self-loops, and
asymmetric hysteron interactions may lead to self-loops, but
there is no simple criterion to delineate the parameter regions
where self-loops can emerge. Future challenges first concern
expanding the range of mappings between physical networks
and hysterons, to define additional self-loop-free hysteron
ensembles and to extend the hysteron model with a measure
of energy dissipation. Second, recent works have studied the
emergence of oscillatory dynamics through nonreciprocal
interactions [41,42,50,51], and our explorations suggest that
nonreciprocally coupled passive bistable elements may be
amenable to a hysteronlike description. Third, since dynami-
cal effects [52] or geometric nonlinearities [25] lead to
transitions not described by current hysteron models, even
for passive physical systems (PM), it will be exciting to
explore the interplay between dynamics, geometry, and
bistability for active systems (AM). Fourth, we suggest that
self-loops can be linked to multiperiodic responses under
cyclic driving using the concept of transition scaffold [5,31].
Finally, it is an open question whether all sectors of the
interacting hysteron model are realizable with physical
systems (H).
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End Matter

Appendix A: Systematic convergence for symmetric
interactions—Here we show that symmetric interactions
yield transitions than lower a Lyapunov-like function, first
focusing on spins (for which h = h; = h¢) following
standard approaches [38,54] and then extending the result
to hysterons. Consider an initial state S and a value of
the drive H such that element p is unstable, which

implies (i) H>h§,—z#pcms9, if s(,),:—l, and
(i) H<h§,—2#pcms§), if s =1, which can be

rewritten as

(A1)

s(,), <H —hj, + Zcpjs?> < 0.

JEP

Let us now introduce the function V, reminiscent of a
Sherrington-Kirkpatrick model with random thresholds,

V(s) = Z[ {(H = hi) +5 Zc,,,,],

i J#FI

:—Zsi(H—hf ZZC Si8 s

i J#i
where the first and second term on the rhs of Eq. (A2)
can be seen as a field and interaction term. We aim to
compute AV = V(8') — V(8°), where S' and §° are the
. . 1 _ 0
state before and after snapping element p, i.e., s;., = i,

(A2)

and s}, = —s?,. Clearly, the terms with elements different

than p will not contribute to AV, and by splitting the
sums accordingly, we obtain

AV = (H hc)+sp(H h)
(ZCU’S s,, + Zcm - Zci,,sis(,),
i#p J#EP i#p
— ijS(I),Sj> s (A3)
J#p
which can be simplified to
AV =259 {H hS) 22 Cip+ Cpj)s } (A4)
J#p
where we repeatedly use that, for j # p, s? = s} =:5;. For
the case of symmetric interactions, i.e., ¢;, = ¢,;, we find
AV =259 [ (H=hS)+ > cpss ,] (A5)
J#p

Inserting the instability condition for element p, Eq. (A1)
yields AV < 0. Therefore, the function V is strictly
decreasing for each single flip, which implies that the
system cannot be trapped in a self-loop and must always
evolve toward a stable state. Note the importance of the
factor 1/2 in Eq. (A2) in order to obtain the final result.
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This demonstration can be extended to finite span
hysterons, by explicitly making the distinction between
hysterons with positive and negative phase and their
respective thresholds, producing Eq. (2) of the main text.

Appendix B: Positive interactions—In this appendix,
we show that, for positive (ferromagnetic) interactions,
ie., ¢;; >0, the system cannot get trapped into a self-
loop. A self-loop is a cyclic avalanche: the system must
come back to a previously visited unstable state. However,
for positive interactions, each step in an avalanche “goes
in the same direction,” i.e., the magnetization m =) . s;
evolves monotonically [20,55]. This prevents avalanches
from revisiting earlier states, thus prohibiting self-loops,
irrespective of the specific rule used to resolve race
conditions [28].

Appendix C: Constant-column interactions—We now
clarify why constant columns (c;; = —dj, d; > 0) define a
self-loop-free interaction ensemble. First, for negative
(antiferromagnetic) interactions, avalanches (including
self-loops) must be composed of alternating up-down
transitions [20]. For L > 6, such self-loops exist [28].
However, all such self-loops violate loop return-point
memory, which requires scrambling: the ordering of the
switching thresholds must be state dependent [20].
Constant-column interactions do not allow for scrambling
[12], therefore this ensemble strictly prevents all self-loops.

Appendix D: Constant-row interactions—We now
show that in the constant-row ensemble (cy; = —d,
d; > 0), avalanches consist of at most two hysteron flips,
which is too short to allow self-loops. Without loss of
generality, we consider an up avalanche initiated from
state S° by an increase of H up to H};(S%), triggering the
flipping of hysteron p from s,=-1 to s, =1 and
leading to state S'. Since we have negative interactions,
avalanches must be composed of alternating up-down
transitions, so that the next step would be the flipping of

hysteron g from s, = 1 to s, = —1 leading to state $%. To

show that S? is stable to additional up flipping events, we
first show that H; (S°) = H; (8?) for i # p, q. Using that,

in this ensemble ¢;, = ¢;,, and that 5% = -1 and s) =1,
we find that
l#pq ZCU J (D1)

Z Cijs J CipSp — Ciqsg (D2)
J#P-q
= > ey (D3)
J#EP.q

Similarly, using that s3 = 1 and 57 = —1, we find that

Hipo(S?) = = Z €ijs} (D4)
J#r.q
and as s3,, =9, . we conclude that H;(S°)=

H (%) for i # p, q. Since in state S° all hysterons i # p,
g are stable, they are also stable in state S>. Moreover,
both hysterons p and ¢ are stable in state S> at H =
H;(S°): indeed, H,(S*)=H}(S°)—0,—2d,<H}(S°),
and hysteron ¢ just flipped. Therefore, the longest
possible avalanche in this interaction ensemble consists of
two steps. By the same argument, this result also holds for
other race conditions that involve flipping hysterons one
by one [28].

Appendix E: Proliferation of self-loops—In this
appendix, we focus on fundamental loops, which are
defined as the unique loops that involve all elements
(n, = N) up to permutations of the element indices [i.e.,
the two L = 4 self-loops in Fig. 3(e) are equivalent]. We
determine the potential number of fundamental loop
structures, M(n,, L), from the combinatorics of flip sequ-
ences and calculate the number of realizable loops with
pairwise interactions, Mg(n,, L) [28]. Both grow rapidly
with n, and L (Table I). In particular, for the shortest
fundamental loops, M(n,,L =2n,) grows as 1,6,56,
796, ... for n, = 2,3,4,5, ... [Figs. 3(b) and 3(c) for n, =
2, 3], and our data suggest that each of these is realizable.
The number of actual self-loops and polytopes grows even
faster with N. Introducing 7, elements into a larger group
of N elements, and including permutations, maps each
fundamental loop to a significantly larger number of actual
loops and polytopes, fueling a further combinatorial
explosion. So while, in principle, we can identify the self-
loops and for each determine their polytope in parameter
space [31], in practice, this is not feasible.

TABLE 1. Numbers of fundamental self-loops of size L
involving n, elements. Note that 4 <L <2V and log, L <
n, < L/2, as each element undergoes an even number of flips;
loops with n, elements can visit at most 2" states; and self-loops
of size 2 are excluded by hl-+ > h; [28]. The numbers in each box
represent M(n,,L), Mg(n,,L), and My(n,,L), respectively.
Note that the number of longest fundamental loops,
M(n,,L = 2"), is given by the number of directed Hamiltonian
cycles in the binary n, cube (1,2,112,15109096,... for

n, =2,3,4,5,...) [56,57].

L/n, 2 3 4 5

4 1/1/0 -

6 6/6/2

8 2/0/0 56/56/24

10 176/114/4 796/796/376
12 420/145/1 9028/x/x
14 448/48/0 76640/x/x
16 112/4/0 535584/x/x
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