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Models of coupled binary elements capture memory effects in complex dissipative materials, such as
transient responses or sequential computing, when their interactions are chosen appropriately. However, for
random interactions, self-loops—cyclic transition sequences incompatible with dissipative dynamics—
dominate the response and undermine statistical approaches. Here we reveal that self-loops originate from
energy injection and limit cycles in the underlying physical system. We, furthermore, introduce interaction
ensembles that strongly suppress or completely eliminate self-loops, allowing statistical studies of memory
in large dissipative systems. Our Letter opens a route toward a unified description of passive and active
multistable materials using hysteron models.
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Sequences of transitions between metastable states gov-
ern the hysteresis [1], memory [2–9], emergent computing
[10–12], sequential shape morphing [13,14], and adaptive
behavior [15,16] of driven dissipative materials, such as
crumpled sheets, disordered media, and metamaterials [9]
[Fig. 1(a)]. As these states are often composed of local, two-
state elements, with or without hysteresis, the response is
commonly described by models of interacting hysterons or
binary spins at zero temperature [Fig. 1(b)]. While models
without interactions are well understood [1,17–19], inter-
actions are crucial for capturing complex responses such as
avalanches, transient responses, and multiperiodic cycles
[5,20]. Pairwise interactions are captured by a matrix cij
which represents how element i’s flipping thresholds are
influenced by element j [Fig. 1(c)]. In some cases, cij can
be measured [7,10], and for networks of physical bistable
elements, it can be modeled [12,21–25]. Hysteron models
with appropriate interactions then enable accurate predic-
tions of the systems response and memory effects
[5,8,10,12,25–27].
Yet, the precise interactions are often unknown, or the

goal is to understand system classes rather than a single
experiment. Strikingly, assigning random interaction coef-
ficients [4,5,20,30–32] overwhelmingly produces self-
loops [Fig. 1(d)]: avalanches that get trapped in a repeating
sequence of states that never settle [20,33–36]. Such
dynamic loops—prohibited in dissipative systems—can
be avoided by using symmetric interactions (cij ¼ cji),
as commonly done in spin glasses where asymmetry
implies energy input and oscillations [33–42]. However,
for hysteretic binary elements, whose strong nonlinearity
invalidates Maxwell-Betti reciprocity [43], asymmetric
interactions are compatible with dissipation. For example,
a small ridge imay weakly affect a larger one j but not vice
versa: jcijj < jcjij [Fig. 1(c)]. Such asymmetric interactions

are experimentally observed and theoretically modeled
[10,12,25] and are crucial for explaining memory effects
[5,32]. A conundrum thus arises: though physical and
essential, random asymmetric interactions yield unphysical
self-loops.
Here we uncover the mechanism that generates self-

loops and show that their probability approaches 1 in large
systems of asymmetrically coupled hysterons. We discuss
physical networks with active bistable elements, map them
to interacting hysterons, and show that these produce
self-loops linked to limit cycles in the networks: rather

(d)

(a)

(b)
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FIG. 1. (a) Crumpled sheet with bistable elements (ridges i and j)
[7]. (b) Abstract hysteron models employ interacting binary
elements. (c) Variations in strength of physical elements map to
asymmetric hysteron interactions (jcijj > jcjij). (d) Self-loop in a
(partial) transition graph. When the switching thresholds satisfy
HþðS1Þ < HþðS0Þ, H−ðS2Þ > HþðS0Þ, and H−ðS3Þ > HþðS0Þ
and the system is in state S0, increasing the driving H above its
thresholdHþðS0Þ triggers a self-loop, as all states are unstable [28].
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than being unphysical, self-loops reveal that coupled hys-
teron models span passive and active physical systems.
Surprisingly, active elements may give rise to symmetric
hysteron interactions. Finally, we introduce weakly asym-
metric interaction ensembles to suppress self-loops, develop
strict ensembles to eliminate them, and use these to study
avalanche statistics and cyclic response in large hysteron
systems. Our Letter uncovers subtle relations between the
symmetry of hysteron interactions, self-loops, and physical
energy injection. Moreover, it shows that hysteron models
unify the description of passive and active multistable
materials, connects the self-loop sector to limit cycles in
active systems, and enables statistical studies of memory
effects and pathways in dissipative and mixed systems.
Model—We considerN binary elements, si ¼ �1, which

form collective states S ¼ ðs1; s2;…Þ. The system is driven
by a global fieldH, and the stability range of each element i
in state S is given by switching thresholds H�

i ðSÞ. For
pairwise interactions,

H�
i ðSÞ ¼ h�i −

X
j≠i

cijsj; ð1Þ

where h�i are the bare switching thresholds of element i. To
model spins, we take hþi ¼ h−i , whereas for hysterons,
hþi > h−i [1,18,19]. The matrix cij, with cii ¼ 0, encodes
cooperative (cij > 0) or frustrated (cij < 0) interactions
that may be asymmetric (cij ≠ cji) [5,12,25,27].
In thismodel, each stateS has a range of stability, encoded

in state switching thresholds H�ðSÞ that follow from the
extrema of H�

i ðSÞ: HþðSÞ ≔ mini− ½Hþ
i ðSÞ� and H−ðSÞ ≔

maxiþ½H−
i ðSÞ�, where i� are the indices where si ¼ �1.

When the system is in state S0 and H is increased above
HþðS0Þ or decreased below H−ðS0Þ, state S0 loses stability
and its unstable hysteron flips. Depending onnu, the number
of unstable hysterons in the resulting state S1, three different
scenarios arise [20,31]. When nu ¼ 0, state S1 is stable;
when nu ¼ 1, state S1 is unstable and its unstable hysteron
flips; when nu > 1, multiple hysterons are unstable. The
latter case,which is abundant in large systems [28], leads to a
race condition and requires a dynamical rule to specify the
next step in the transition [10,12,20,27,31]. In the remainder,
we flip the most unstable element first [5]; this rule is
physically plausible and corresponds to the zero-temperature
limit of the Glauber dynamics [44,45] [for other rules see
Supplemental Material [28] ].
Hysterons with symmetric interactions—Although hys-

teron interactions are not expected to be symmetric,
numerical sampling reveals that symmetric interactions
consistently avoid self-loops. This can be proven by
showing that the quantity VðSÞ, written as

VðSÞ ¼ −
X
i∓

�
siðH − h�i Þ þ

1

2

X
j≠i

cijsisj

�
; ð2Þ

is a Lyapunov-like function of the system, which guaran-
tees that the latter always converges toward a stable state
and thus prohibits self-loops (Appendix A).
Random asymmetric coupling: Gaps and self-loops—We

now exploit random interactions, where cij and cji are
sampled independently. For any value of H, each isolated
element has one stable phase or two within the hysteretic
range. Without interactions, stable states can thus be easily
formed by combining stable elements. However, inter-
actions make the switching thresholds dependent on the
collective state, effectively randomizing stability ranges
and creating gaps, ranges of H where no state is stable.
We find two related scenarios where interactions lead to

self-loops. The length of a self-loop, i.e., the number of
unstable states visited within the cycle, is denoted L. We
consider state S going unstable by the driving crossing a
critical valueHc. In the first scenario, Hc lies at the edge of
a gap, and the system gets inevitably trapped in a self-loop
as there are no stable states. In the second, a set of L distinct
unstable states transition toward each other, forming a
periodic attractor, and the system gets trapped, despite the
presence of other stable states at H ¼ Hc.
To investigate the statistics of gaps, self-loops, and the

self-loop size distribution [28], we sample the model using
an event-driven algorithm [5]. We consider collections of
hysterons with thresholds in a compact range [5,8,32]: we
flatly sample the midpoints of the bare switching thresholds
hci ¼ ðhþi þ h−i Þ=2 from the interval ½−1; 1� and the inter-
action coefficients cij from ½−J0; J0�. Unless noted other-
wise, we flatly sample the spans σi ¼ hþi − h−i > 0 from
[0, 0.5].
We find that the probability P0

g of a gap, meaning the
absence of a stable state at H ¼ 0, and the fraction of gaps
fG both increase as power laws when NJ0 ≪ 1 [Figs. 2(a)
and 2(b)]. For NJ0 ≫ 1, they saturate at significant values.
The probability that states have a finite stability range
decreases exponentially with N: for large N, stable states
become rare, prohibiting statistical studies of transi-
tions [28].
Gaps imply self-loops, but self-loops can also occur

outside of gaps. Therefore, the probability of a self-loop
occurring starting from a random state at H ¼ 0, P0

sl, is
larger than the corresponding gap probability P0

g [Fig. 2(c)
and Supplemental Material [28] ]. Similarly, we calculated
the total probability of observing a self-loop at any value of
H, Psl, by starting from every stable state, increasing and
decreasingH, and checking whether the ensuing transitions
yield at least one self-loop. We find that Psl approaches 1 in
large, strongly coupled systems [Fig. 2(d) and [28] ]. This
dominance of self-loops is robust; hysterons with fixed
spans σi ¼ 0.5 and binary spins where σi ¼ 0 also have
Psl → 1 in the large coupling limit [28,33–36]. Hence, self-
loops, incompatible with the dissipative systems we aim to
model, are unavoidable for random interactions, and for
large systems completely overwhelm the response.

PHYSICAL REVIEW LETTERS 135, 207402 (2025)

207402-2



Networks of active elements—To gain further insights
into the emergence of self-loops in physical systems, we
consider networks of bilinear, hysteretic springs,

fiðxiÞ ¼ xi − disi; ΔEi ≔ 2diσ0i ; ð3Þ

where transitions occur at xi ¼ x�i , σ
0
i ≔ xþi − x−i is taken

positive, and ΔEi is the dissipated energy per hysteresis
loop [Figs. 3(a) and 3(b)]. Once the geometry of the
network and the parameters of all elements are specified,
the network can be mapped to an interacting hysteron
model [12,25]. This mapping never yields hysteron param-
eters that produce self-loops as long as the physical
elements dissipate energy, i.e., when di > 0.
We find that networks that include active elements

(di < 0), enabled by, e.g., force-generating components
activated when si ¼ 1 [Fig. 3(b)], are mapped to hysteron
models that can feature self-loops. For simplicity, we
consider a network of two serially coupled elements, where
the mapping yields cij ¼ −dj and σi ¼ 2ðσ0i þ diÞ [12,25],
producing four distinct behaviors [Figs. 3(c) and 3(d)].
(i) When both elements are passive, the hysteron spans σi
are positive, the interaction coefficients are both negative,

and no self-loops occur [12]. (ii) For strongly active
elements, i.e., di < −σ0i , the hysteron spans σi become
negative [Fig. 3(e)]. Here we expect the physical system to
feature dynamic limit cycles [46–48], (partly) captured by
an extended hysteron model. (iii) Weakly active elements
map to hysterons with σi > 0 and interaction coefficients
not accessible with passive elements. Strikingly, active
elements with d1 ¼ d2 < 0 map to hysteron models with
symmetric interactions [Figs. 3(d) and 3(f), orange line]:
there is no simple relation between the symmetry of cij and
energy input. (iv) Crucially, for appropriately chosen
activity, the physical system maps to the hysteron model
with an L ¼ 4 self-loop. For details, see Supplemental
Material [28].
Hence, active elements extend the range of realizable

hysteron parameters, may produce negative hysteron spans,

(c) (d)

(a) (b)

FIG. 2. Statistical measures for gaps and self-loops scale when
plotted as function ofNJ0 (105 samples; color from light to dark as
N increases from 2 to 10). (a) Probability P0

g of finding a gap at
H ¼ 0 (dashed line indicates slope 4). (b)Averaged fraction of gaps
fG, where fG is defined as the ratio of the size of intervals where
no stable states exist divided by H−ðþ þ…Þ −Hþð− −…Þ
(dashed line indicates slope 4). (c) Probability P0

sl of finding at
least one self-loop at H ¼ 0 (dashed line indicates slope 4).
(d) Probability Psl of finding at least one self-loop for any value
ofH (dashed line indicates slope 3). Inset: the probability to be self-
loop-free, 1 − Psl, decays to zero exponentially with N for large
couplings (NJ0 ¼ 102).

(a)

(d) (f)

(c)

(g)(e)

FIG. 3. Self-loops in networks containing active elements. (a),
(b) Force-displacement curves for a dissipative element with di >
0 and ΔEi < 0 [(a), blue], and for an active element with di < 0
and ΔEi > 0 [(b), red]. (c) Two serially coupled elements, with
total displacement U ¼ x1 þ x2. (d) Four classes of behaviors for
two serially coupled elements as function of d1 and d2; here
ðx−1 ; xþ1 Þ ¼ ð−1; 1Þ, ðx−2 ; xþ2 Þ ¼ ð0.2; 0.4Þ. (e) Serially coupling
one active element and a linear spring (representing one of the
elastic branches of the second element) can produce a gap without
stable states [Uþð△Þ < U−ð▽Þ] if d1 is strongly negative [28].
(f) Regions where self-loops emerge for two coupled hysterons;
for fixed σ1 ¼ σ2 ¼ 0 (green areas) and for ðσ1; σ2Þ determined
for the physical system represented by the red dot in (d) (red
boundaries). The blue hatched regions in (d),(f) represent purely
dissipative systems. Orange lines in (d),(f) indicate active
elements that lead to symmetric hysteron interactions. (g) Two
L ¼ 4 self-loops observed in (d),(f).
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and allow one to access the hysteron sector with self-loops.
Similar mechanisms also arise in fully dynamic models
combining activity and bistability [49]. While larger, more
complex networks remain to be understood, our example
shows that self-loops can be physically interpreted as
arising from energy injection in networks of two-state
elements. The hysteron model features self-loops because it
encompasses both passive and active systems.
Proliferation of self-loops—We now return to the hys-

teron model and seek to understand the parameters for
which self-loops occur. Each self-loop is associated with
a set of linear inequalities and occurs in a polytope in
parameter space ðh�i ; cijÞ [5,20,31,32]. We first consider
L ¼ 4 loops [Fig. 3(g)]. For two spins, we find that a gap
of size jΔcj − jΔhcj opens up when c12c21 < 0 and
jΔcj > jΔhcj, where Δc ≔ c12 − c21 and Δhc ≔ hc2 − hc1.
These conditions are sufficient and necessary for the
emergence of a self-loop [Fig. 3(f)]. For two hysterons,
the range in parameter space where these self-loops can
occur shrinks [Fig. 3(f) and [28] ]. Finally, we can extend
these conditions to arbitraryN; as only two elements i and j
are involved for L ¼ 4 self-loops, such short self-loops are
prohibited by requiring cijcji ≥ 0 for all pairs ði; jÞ [28].
By identifying all potential self-loops with L ≤ 2N , one

could, in principle, determine all corresponding polytopes;
the complement of their union is then free of self-loops.
We have investigated the number of distinct self-loops,
each corresponding to a different polytope in parameter
space, with L. While our approach allows an efficient
classification of the self-loop structures, we find that their
number grows extremely rapidly with N (Appendix E and
Supplemental Material [28]). This proliferation of the
number, length, and complexity of self-loops makes deriv-
ing explicit and sharp conditions that identify all self-loops
unfeasible. In the remainder, we first introduce a lenient
strategy that removes the shortest and suppresses longer
self-loops, followed by strict ensembles that fully eliminate
all self-loops but are overly restrictive.
Lenient strategy: Weak asymmetry—We introduce the

notion of weak asymmetry (WA): cijcji ≥ 0 for all pairs
ði; jÞ. Not only does WA eliminate L ¼ 4 self-loops, but it
also suppresses the number of longer self-loops that are
realizable (Appendix E and [28]). Statistical sampling
reveals that WA is an effective strategy to suppress self-
loops. In particular, P0

sl → 0 for large N, allowing one to
sample individual transitions, although Psl slowly grows
with N: the combinatorial possibilities of finding a self-
loop dominates in large systems [28]. Nevertheless, for
intermediate N, WA strongly suppresses self-loops, e.g.,
Psl ≈ 14% for large couplings and N ¼ 10. Hence, WA
strictly prohibits short self-loops and suppresses longer
self-loops.
Strict ensembles—We now present ensembles of asym-

metric interactions that strictly prohibit self-loops. First, if
all interactions are positive (cij ≥ 0), avalanches exhibit

monotonic evolution of the magnetization m ≔ Σsi, thus
prohibiting self-loops (Appendix B). If all interactions
are negative, and either cik ¼ −dk (constant columns) or
cki ¼ −dk (constant rows), where dk ≥ 0, self-loops are
also prohibited. In the former case [which corresponds to
the hashed blue region in Fig. 3(d)], the interactions
prohibit scrambling [12], which, in turn, prohibits self-
loops (Appendix C); in the latter case, the interactions only
allow avalanches of length 2, too short to form a self-loop
when σi ≥ 0 (Appendix D and Supplemental Material
[28]). We note that the statistics of, e.g., avalanches and
self-loops drastically depends on the dynamical rule in all
these ensembles. In particular, when race conditions are not
allowed [12,20,31], constant-column interactions restrict
the avalanche size A ≤ 2, whereas flipping the most (or
least) unstable elements leads to much larger A [Fig. 4(a)].
Moreover, flipping all unstable elements simultaneously
instead of only the most unstable one leads to a dominance
of L ¼ 2 self-loops for symmetric, constant-column, and
constant-row interactions [28].
The strictly self-loop-free ensembles allow us to study

the statistics of unprecedentedly large systems of interact-
ing hysterons, including the distributions of avalanche sizes
A, transient times τ, and multiperiodicities T of orbits under
cyclic drive (Fig. 4 and Supplemental Material [28]). We
find that these significantly depend on the ensemble, e.g.,

(b)(a)

(d)(c)

FIG. 4. Simulations of large systems of coupled hysterons in
the constant columns (left) and symmetric (right) ensembles
(N ¼ 16; 32;…; 512 for increasingly dark colors). (a),(b) En-
semble averaged avalanche size hAi. To determine these, we
initialize the system at a stable state S0 at H ¼ 0, increase H, and
measure the number of flips before the system settles on a stable
state. (c),(d) Ensemble averaged transient hτi, where τ is the
number of cyclic drive cycles after which the system reaches a
periodic orbit [28].
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avalanches and transients are shorter in the constant
columns than in the symmetric ensemble, and their
dependence on NJ0 is qualitatively different.
Conclusion and outlook—The picture that emerges is that

hysteron models connect with both passive and active multi-
stable physical systems.We summarize the relations between
networks of bistable elements, the symmetry of hysteron
interactions, and self-loops in Fig. 5. Strikingly, symmetric
hysteron interactions can arise from networks of active or
passive bistable elements, but cannot feature self-loops, and
asymmetric hysteron interactions may lead to self-loops, but
there is no simple criterion to delineate the parameter regions
where self-loops can emerge. Future challenges first concern
expanding the range of mappings between physical networks
and hysterons, to define additional self-loop-free hysteron
ensembles and to extend the hysteron model with a measure
of energy dissipation. Second, recent works have studied the
emergence of oscillatory dynamics through nonreciprocal
interactions [41,42,50,51], and our explorations suggest that
nonreciprocally coupled passive bistable elements may be
amenable to a hysteronlike description. Third, since dynami-
cal effects [52] or geometric nonlinearities [25] lead to
transitions not described by current hysteron models, even
for passive physical systems (PM), it will be exciting to
explore the interplay between dynamics, geometry, and
bistability for active systems (AM). Fourth, we suggest that
self-loops can be linked to multiperiodic responses under
cyclic driving using the concept of transition scaffold [5,31].
Finally, it is an open question whether all sectors of the
interacting hysteron model are realizable with physical
systems (H).
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End Matter

Appendix A: Systematic convergence for symmetric
interactions—Here we show that symmetric interactions
yield transitions than lower a Lyapunov-like function, first
focusing on spins (for which hþi ¼ h−i ¼ hci ) following
standard approaches [38,54] and then extending the result
to hysterons. Consider an initial state S0 and a value of
the drive H such that element p is unstable, which
implies (i) H > hcp −

P
j≠p cpjs

0
j , if s0p ¼ −1, and

(ii) H < hcp −
P

j≠p cpjs
0
j , if s0p ¼ 1, which can be

rewritten as

s0p

�
H − hcp þ

X
j≠p

cpjs0j

�
< 0: ðA1Þ

Let us now introduce the function V, reminiscent of a
Sherrington-Kirkpatrick model with random thresholds,

VðsÞ ¼ −
X
i

�
siðH − hci Þ þ

1

2

X
j≠i

cijsisj

�
;

¼ −
X
i

siðH − hci Þ −
1

2

X
i

X
j≠i

cijsisj; ðA2Þ

where the first and second term on the rhs of Eq. (A2)
can be seen as a field and interaction term. We aim to
compute ΔV ¼ VðS1Þ − VðS0Þ, where S1 and S0 are the
state before and after snapping element p, i.e., s1i≠p ¼ s0i≠p
and s1p ¼ −s0p. Clearly, the terms with elements different

than p will not contribute to ΔV, and by splitting the
sums accordingly, we obtain

ΔV ¼ −s1pðH − hcpÞ þ s0pðH − hcpÞ

−
1

2

 X
i≠p

cipsis1p þ
X
j≠p

cpjs1psj −
X
i≠p

cipsis0p

−
X
j≠p

cpjs0psj

!
; ðA3Þ

which can be simplified to

ΔV ¼ 2s0p

�
ðH − hcpÞ þ

1

2

X
j≠p

ðcjp þ cpjÞsj
�
; ðA4Þ

where we repeatedly use that, for j ≠ p, s0j ¼ s1j ≕ sj. For
the case of symmetric interactions, i.e., cjp ¼ cpj, we find

ΔV ¼ 2s0p

�
ðH − hcpÞ þ

X
j≠p

cpjsj

�
: ðA5Þ

Inserting the instability condition for element p, Eq. (A1)
yields ΔV < 0. Therefore, the function V is strictly
decreasing for each single flip, which implies that the
system cannot be trapped in a self-loop and must always
evolve toward a stable state. Note the importance of the
factor 1=2 in Eq. (A2) in order to obtain the final result.
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This demonstration can be extended to finite span
hysterons, by explicitly making the distinction between
hysterons with positive and negative phase and their
respective thresholds, producing Eq. (2) of the main text.

Appendix B: Positive interactions—In this appendix,
we show that, for positive (ferromagnetic) interactions,
i.e., cij ≥ 0, the system cannot get trapped into a self-
loop. A self-loop is a cyclic avalanche: the system must
come back to a previously visited unstable state. However,
for positive interactions, each step in an avalanche “goes
in the same direction,” i.e., the magnetization m ≔

P
i si

evolves monotonically [20,55]. This prevents avalanches
from revisiting earlier states, thus prohibiting self-loops,
irrespective of the specific rule used to resolve race
conditions [28].

Appendix C: Constant-column interactions—We now
clarify why constant columns (cik ¼ −dk, dk ≥ 0) define a
self-loop-free interaction ensemble. First, for negative
(antiferromagnetic) interactions, avalanches (including
self-loops) must be composed of alternating up-down
transitions [20]. For L ≥ 6, such self-loops exist [28].
However, all such self-loops violate loop return-point
memory, which requires scrambling: the ordering of the
switching thresholds must be state dependent [20].
Constant-column interactions do not allow for scrambling
[12], therefore this ensemble strictly prevents all self-loops.

Appendix D: Constant-row interactions—We now
show that in the constant-row ensemble (cki ¼ −dk,
dk ≥ 0), avalanches consist of at most two hysteron flips,
which is too short to allow self-loops. Without loss of
generality, we consider an up avalanche initiated from
state S0 by an increase of H up to Hþ

p ðS0Þ, triggering the
flipping of hysteron p from sp ¼ −1 to sp ¼ 1 and
leading to state S1. Since we have negative interactions,
avalanches must be composed of alternating up-down
transitions, so that the next step would be the flipping of
hysteron q from sq ¼ 1 to sq ¼ −1 leading to state S2. To
show that S2 is stable to additional up flipping events, we
first show that Hþ

i ðS0Þ ¼ Hþ
i ðS2Þ for i ≠ p, q. Using that,

in this ensemble cip ¼ ciq, and that s0p ¼ −1 and s0q ¼ 1,
we find that

Hþ
i≠p;qðS0Þ ¼ hþi −

X
j

cijs0j ðD1Þ

¼ hþi −
X
j≠p;q

cijs0j − cips0p − ciqs0q ðD2Þ

¼ hþi −
X
j≠p;q

cijs0j : ðD3Þ

Similarly, using that s2p ¼ 1 and s2q ¼ −1, we find that

Hþ
i≠p;qðS2Þ ¼ hþi −

X
j≠p;q

cijs2j ; ðD4Þ

and as s2j≠p;q ¼ s0j≠p;q, we conclude that Hþ
i ðS0Þ ¼

Hþ
i ðS2Þ for i ≠ p, q. Since in state S0 all hysterons i ≠ p,

q are stable, they are also stable in state S2. Moreover,
both hysterons p and q are stable in state S2 at H ¼
Hþ

p ðS0Þ: indeed, H−
pðS2Þ¼Hþ

p ðS0Þ−σp−2dp <Hþ
p ðS0Þ,

and hysteron q just flipped. Therefore, the longest
possible avalanche in this interaction ensemble consists of
two steps. By the same argument, this result also holds for
other race conditions that involve flipping hysterons one
by one [28].

Appendix E: Proliferation of self-loops—In this
appendix, we focus on fundamental loops, which are
defined as the unique loops that involve all elements
(ne ¼ N) up to permutations of the element indices [i.e.,
the two L ¼ 4 self-loops in Fig. 3(e) are equivalent]. We
determine the potential number of fundamental loop
structures, Mðne; LÞ, from the combinatorics of flip sequ-
ences and calculate the number of realizable loops with
pairwise interactions, MRðne; LÞ [28]. Both grow rapidly
with ne and L (Table I). In particular, for the shortest
fundamental loops, Mðne; L ¼ 2neÞ grows as 1; 6; 56;
796;… for ne ¼ 2; 3; 4; 5;… [Figs. 3(b) and 3(c) for ne ¼
2, 3], and our data suggest that each of these is realizable.
The number of actual self-loops and polytopes grows even
faster with N. Introducing ne elements into a larger group
of N elements, and including permutations, maps each
fundamental loop to a significantly larger number of actual
loops and polytopes, fueling a further combinatorial
explosion. So while, in principle, we can identify the self-
loops and for each determine their polytope in parameter
space [31], in practice, this is not feasible.

TABLE I. Numbers of fundamental self-loops of size L
involving ne elements. Note that 4 ≤ L ≤ 2N and log2 L ≤
ne ≤ L=2, as each element undergoes an even number of flips;
loops with ne elements can visit at most 2ne states; and self-loops
of size 2 are excluded by hþi ≥ h−i [28]. The numbers in each box
represent Mðne; LÞ, MRðne; LÞ, and MWðne; LÞ, respectively.
Note that the number of longest fundamental loops,
Mðne; L ¼ 2neÞ, is given by the number of directed Hamiltonian
cycles in the binary ne cube (1; 2; 112; 15109096;… for
ne ¼ 2; 3; 4; 5;…) [56,57].

L=ne 2 3 4 5

4 1=1=0 � � � � � � � � �
6 � � � 6=6=2 � � � � � �
8 � � � 2=0=0 56=56=24 � � �
10 � � � � � � 176=114=4 796=796=376
12 � � � � � � 420=145=1 9028=x=x
14 � � � � � � 448=48=0 76640=x=x
16 � � � � � � 112=4=0 535584=x=x
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